

World EnC Absorption Chiller

Creating Value For The Customer Through The Absorption Technology

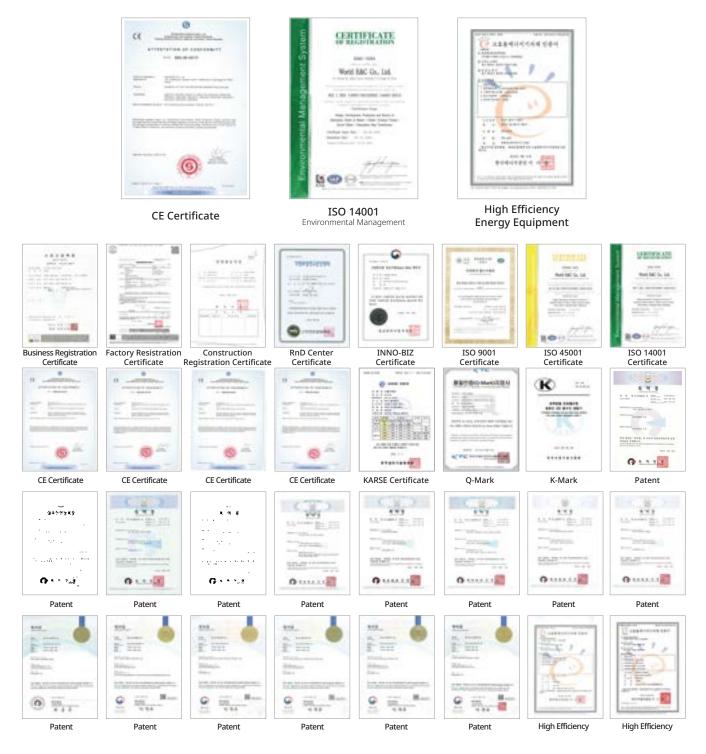
World EnC Co.,Ltd.

THE BEST SOLUTION FOR ABSORPTION CHILLER

02

CONTENTS

Company History	05
Direct Fired Absorption Chiller & Heater	06
Double Lift Hot Water Absorption Chiller	14
Double Stage Hot Water Absorption Chiller	18
Hot Water Absorption Chiller	20
Steam Fired Absorption Chiller	23
Exhaust Gas Absorption Chiller & Heater	26
Multi-Fuel Absorption	30
Heat Pump	32
Control System	34
Field Installed	35



By continuing challenge, We will open the eco-friendly future.

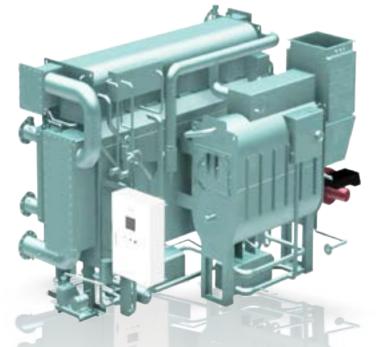
World EnC Absorption Chiller

We challenge, innovate and strive to satisfy our customers with the best value by providing the most pleasant environment and happiness for the mankind based on our accumulated technology. The compay being advanced backed up by customer's encouragement and trust.

The company always seeking innovation with the sense of responsibility and future-oriented mind. We commit ourselves to taking our full responsibility as a new leader of the future energy industry based on the best quality and the latest technology.

Brief History

2023	Development Oil-Free Centrifugal Chiller : Danfoss/Turbocor Compressor 2-3 comp (200~600RT)
2022	Development Oil-Free Centrifugal Chiller : Danfoss/Turbocor Compressor 1 comp (80~200RT)
2021	Acquired 3 patents for vapor compression chiller (Flooded evaporator, high efficiency condenser, oil recovery function)
2020	Begin to development of vacuum hot water boiler
2019	Acquired high efficiency Certi. of Screw Chiller (Water coolded-134a)
2018	Initiate development of High Efficiency Screw Chiller
2017	Initiate national project of development of Heat Pump and transformer
	Initiate national project of development of Absorption Chiller
2016	Certificate of Designation of Excellent Product by Public Procurement
	Service Registraion of Direct Fired Absorption Chiller&Heater in Korea Public Procurement Agency
	Certificate of green technology (Double Lift Hot water Driven Absorption Chiller)
	Certificate of high efficiency energy material (Double Lift Hot water Driven Absorption Chiller)
	New business for Screw chiller and Absorption heat pump
2015	Start to develop absorption heat pump for nation project
	Development of Air Handling Unit (AHU) for exhaust heat recovery
2014	Registration Air Handling Unit in Public Procurement Agency
	CE:Double-Effect Direct Fired Absorption Chiller&Heater Single-Effect Double Lift Hot water Driven Absorption Chiller (WDL 75~975 Series)
2013	Certificate ISO 14001
	Build a new factory for Air Handling Unit(AHU)
2011	Development of High-efficiency Direct Fired Absorption chiller&heater (COP 1.36, 1.51(LHV))
2010	Resigtration of Double Lift Hot water Driven Absorption Chiller as excellent product by Korea Public Procure Agency
2009	Development of exhaust gas absorption chiller-heater
2007	Registration of patent (Double Lift Hot water Driven Absorption Chiller)
2006	Development of Double Lift Hot water Absorption Chiller
	Development of Single Effect Hot water Driven Absorption Chiller
	Certificate INNO BIZ by SMBA
2005	Registration license of making specific facility, Certificate of venture company
	Establish research affiliated with World E&C (Korea industrial technology promotion association)
2001-2003	Certificate ISO 9001 / 9002
1999	Business for high temperature generator in Direct Fired Absorption Chiller&Heater
	Establish World EnC



05

Direct Fired Absorption Chiller & Heater 50RT ~ 1500RT 29 Models

Patent

Features of WDA Series

1. High reliability

- Designed to enhance the reliability and durability
- · Robust structure through the perfect reliability test for long time and higher reliability by adopting high quality components

2. Efficient operation

- · Energy saving and efficiency realized
- Optimal control for the solution cycling volume by inverter depending on the cooling load
- Optimal PID control by sensing the operating condition with the level sensor
- · Minimized power consumption due to precise operation and partial load operation [Option] Early reduction, Anti-freezing, Refrigerant generation, Solution refining, Tube ball clean, Crystal forming prevention from power failure

3. Convenient partition

- Repair and maintenance is easy. Multi-partition structure
- · Mounting/detaching structure for easy repair and maintenance
- Partial incoming to make it possible for field work such as remodeling at narrow space. Assembling at field is possible.

4. Low noise and low vibration

Below 75dB at 1m distance for noise level

5. Perfect vacuum

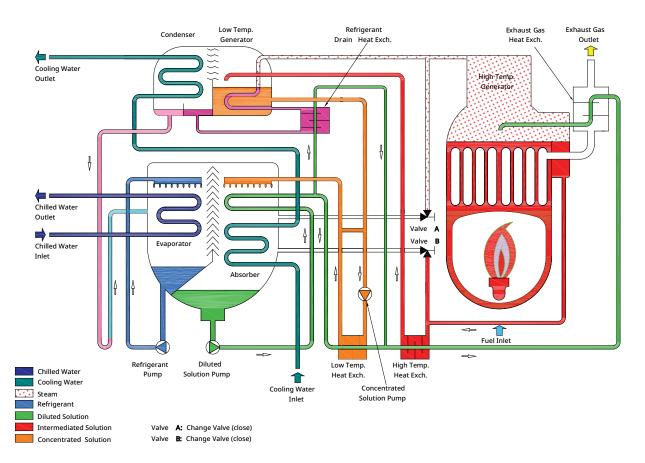
- High performance & purge system. Cost-efficiency for maintenance
- Leakage for one month at below 3cc. High vacuum condition
- Auto purge. / Non-condensing gas storage
- Maintaining optimal operating condition.
- Operation with only minimum steam extraction.

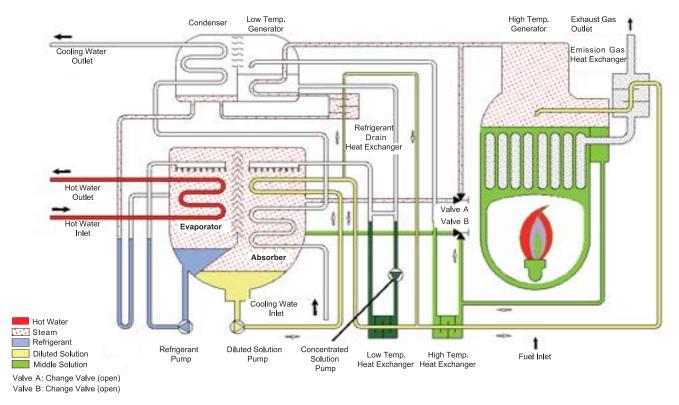
6. Enough capacity

- · Heating capacity increase system
- Designed to increase up to 3 stages from the standard.

7. Latest operation

- Latest PLC, remote control and BAS compatible
- Increase chiller's efficiency with precise PID control
- Applicable for Modbus, Ethernet, BAC Net TCP/IP
- 10 inch touch screen and possible for VNC communication
- Chiller's status can be monitored through PLC Web connection (Option)




CYCLE DIAGRAM

Direct Fired Absorption Chiller & Heater

Cooling Cycle Diagram

Heating Cycle Diagram

SPECIFICATION [WDA Series]

Direct Fired Absorption Chiller & Heater

COP 1.1(LHV)

	MOD	EL	UNIT	WDA 005	WDA 006	WDA 007	WDA 008	WDA 010	WDA 012	WDA 015	WDA 018	WDA 021	WDA 024	WDA 028	WDA 032	WDA 036	WDA 040		
C	ooling o	apacity	usRT	50	60	70	80	100	120	150	180	210	240	280	320	360	400		
	Joining C	apacity	kW	176	211	246	281	352	422	528	633	739	844	985	1,125	1,266	1,407		
На	ating (Capacity	Mcal/h	151	181	212	242	302	363	454	544	635	726	847	968	1,089	1,210		
THE	sating C	араспу	kW	176	211	246	281	352	422	528	633	739	844	985	1,125	1,266	1,407		
	Temp	. (inlet/outlet)	°C						12/	7 (Heatir	ng 55/6	0°C)							
Chilled &		Flow rate	m³/h	30.2	36.3	42 <u>.</u> 3	48.4	60.5	72.6	90.7	108.9	127.0	145.2	169.3	193.5	217 <u>.</u> 7	241.9		
Hot Water		P.Drop	mAq	7.6	7.7	5.8	5.4	5.9	6.0	8.0	8 <u>.</u> 1	7.5	7.4	5.3	5 <u>.</u> 2	5 <u>.</u> 7	5.9		
water	C	Connection	mm		8	80			1	00		1	25		18	50			
	Temp	. (inlet/outlet)	°C							32/	37								
Cooling		Flow rate	m³/h	50	60	70	80	100	120	150	180	210	240	280	320	360	400		
Water		P.Drop	mAq	3.5	3.7	8.2	7 <u>.</u> 7	3 <u>.</u> 3	3 <u>.</u> 5	9.6	10 <u>.</u> 1	5 <u>.</u> 8	4 <u>.</u> 7	8 <u>.</u> 7	8 <u>.</u> 8	8.9	8.8		
	C	Connection	mm		1	00			1	25		1	50		2	00			
		Cooling	N _{m³} ∕h	15.9	19.1	22 <u>.</u> 3	25.5	31.8	38.2	47.7	57.3	66.8	76.4	89.1	101.9	114.6	127.3		
	Gas	Heating	N _{m³} /h	18.9	22 <u>.</u> 7	26.5	30.2	37.8	45.4	56.7	68.0	79.4	90.7	105.9	121.0	136.1	151.2		
Fuel		Connection	mm						2	40 (4,00	0mmAq)								
1 UCI		Cooling	kg/h	16.4	19 <u>.</u> 7	23 <u>.</u> 0	26.3	32.9	39.4	49.3	59.2	69.0	78 <u>.</u> 9	92.0	105.2	118 <u>.</u> 3	131.5		
	Oil	Heating	kg/h	19 <u>.</u> 5	23.4	27 <u>.</u> 3	31 <u>.</u> 2	39.0	46.8	58.6	70 <u>.</u> 3	82.0	93.7	109.3	124.9	140.5	156.1		
		Connection	mm	10 15										20					
	Pov	wer Source	-							3 Φ , 400)V, 50Hz								
	Abs.	Pump No.1	kW(A)		1 <u>.</u> 2	(4.0)			2 <u>.</u> 0	(6.0)		2.4	(7.5)	3 <u>.</u> 0(1	11.0)	3.4	(10.2)		
	Abs.	Pump No.2	kW(A)		0 <u>.</u> 3	(1.6)			0 <u>.</u> 4	(1.6)			1_2(4_5	5)		1.5	5(5.0)		
	R	ef. Pump	kW(A)		0 <u>.</u> 2	(1.1)			0 <u>.</u> 3	(1.5)				0.4(1.5)				
Electric	Pu	ırge Pump	kW(A)							0.4(1_4)								
Electric	Bur	ner Blower	kW(A)	0.37	7(1 <u>.</u> 0)			0.75(2	1)			1.5(4.0)	2	2(5.0)		3.0 (6.5)		
	C	Dil Pump	kW(A)		-	_			0.24(0.6	3)			(0.55(2.1	1)				
	Co	ntrol Panel	kW(A)							0.2	(0.5)								
	Total	Gas	kW(A)	2.67	(9.6)	3.05	(10.7)	4	.05 (13.	1)	4.8(15.0)	6.1 (19.4)	7.4 ((23.9)	8.1 (23.6)	8.9(25.1)		
	Amp.	Oil	kW(A)	2.67	(9.6)	3.05	(10.7)	4	.29 (13.	7)	5.35(17.1)	19.95	(21.5)	7.95	(26.0)	8.65(25.7)	9.45(27.2)		
	L	ength(L)	mm	2,0	630	2,	700	2,	853	З,	644	3,	696	4,7	782	4,	867		
Size	v	Vidth(W)	mm	1,8	840	1,	840	1,	940	2,	051	2,	102	2,2	200	2,	287		
	Н	leight(H)	mm		1,9	910			2,0	020			2,3	390		2,	585		
Moight	1	Rigging	Ton	2 <u>.</u> 7	2.9	3.1	3.5	3 <u>.</u> 8	4 <u>.</u> 0	4.9	5 <u>.</u> 3	6.1	7 <u>.</u> 2	7.7	8 <u>.</u> 3	10.3	10 <u>.</u> 5		
Weight	0	peration	Ton	3.0	3.2	3.4	3 <u>.</u> 8	4.6	4 <u>.</u> 8	5.8	6 <u>.</u> 4	7.5	7 <u>.</u> 8	8.7	9 <u>.</u> 3	11.7	12 <u>.</u> 1		
Space for	or Tube	Replacement	mm	2,0	000		2,	400			3,4	3,400 4,600							

Remark 1) 1usRT = 3,024 kcal/h

2) Working Pressure of each water side is based on 1.0MPa [151psig]

3) Nutural Gas LHV(Lower Heating Value) : 9,500kcal/Nm³, Diesel Oil LHV(Lower Heating Value) : 9,200kcal/kg

4) Fouling factor $0.0001m^2h^{\circ}$ /kcal for Absorber and Condenser, $0.0001m^2 \cdot h^{\circ}$ C/kcal for Evaporator.

5) Catalogue specifications are subject to change without prior notice.

	MODI	EL	UNIT	WDA 045	WDA 050	WDA 056	WDA 063	WDA 070	WDA 080	WDA 090	WDA 100	WDA 110	WDA 120	WDA 130	WDA 140	WDA 150		
0.	!!		usRT	450	500	560	630	700	800	900	1,000	1,100	1,200	1,300	1,400	1,500		
C	boling c	apacity	kW	1,583	1,758	1,969	2,216	2,462	2,814	3,165	3,517	3,869	4,220	4,572	4,924	5,275		
	oting C	on o oitr	Mcal/h	1,361	1,512	1,693	1,905	2,117	2,032	2,286	2,540	2,794	3,048	3,302	3,556	3,810		
пе	ating C	apacity	kW	1,583	1,758	1,969	2,216	2,462	2,363	2,659	2,954	3,250	3,545	3,840	4,136	4,431		
	Temp	. (inlet/outlet)	°C						12/7(ł	Heating 5	55/60°C)						
Chilled &	I	Flow rate	m³/h	272 <u>.</u> 2	302.4	338.7	381.0	423.4	483.8	544.3	604.8	665.3	725.8	786 <u>.</u> 2	846.7	907.2		
Hot Water		P.Drop	mAq	5.1	5.3	4.2	5.7	7.6	5.5	7.4	9.7	7.4	9.4	11.7	9.4	11.5		
Walei	С	onnection	mm			200				250			300		35	50		
	Temp	. (inlet/outlet)	°C							32/37								
Cooling	I	Flow rate	m³/h	450	500	560	630	700	800	900	1,000	1,100	1,200	1,300	1,400	1,500		
Water		P.Drop	mAq	8 <u>.</u> 6	8.7	6.4	8.8	11 <u>.</u> 7	9.1	12 <u>.</u> 3	16.2	12 <u>.</u> 3	15 <u>.</u> 7	7 <u>.</u> 2	12 <u>.</u> 8	15 <u>.</u> 7		
	С	onnection	mm	25	50		300			350				400				
		Cooling	Nm³/h	143.2	159.2	178 <u>.</u> 3	200.5	222.8	254 <u>.</u> 7	286.5	318.3	350.1	382.0	413 <u>.</u> 8	445.6	477.5		
	Gas	Heating	Nm³/h	170.1	189.0	211.7	238.2	264.6	254.0	285.8	317.6	349.3	381.1	412 <u>.</u> 8	444.6	476.3		
Fuel		Connection	mm				50 (4,00)0mmAq)				65 (4,000mm	nAq)			
Fuel		Cooling	kg/h	147.9	164 <u>.</u> 3	184 <u>.</u> 1	207.1	230.1	263 <u>.</u> 0	295.8	328.7	361.6	394.4	427 <u>.</u> 3	460.2	493.0		
	Oil	Heating	kg/h	175.7	195.2	218 <u>.</u> 6	245 <u>.</u> 9	273.3	262.3	295.1	327 <u>.</u> 9	360.7	393.5	426 <u>.</u> 3	459 <u>.</u> 1	491.9		
		Connection	mm			20							25					
	Pov	ver Source							30	Þ, 400V,	400V, 50Hz							
	Abs.	Pump No.1	kW(A)	3.4(10.2)		5.5(14.5)		6.6 (16.2	2)	7.5 (25.0)						
	Abs.	Pump No.2	kW(A)	1 <u>.</u> 5	(5.0)		2.0 (6.0)			2.2 (7.0))		4	45(160)			
	R	ef. Pump	kW(A)		C	.4(1.5)						1.5(4.0)					
Electric	Pu	rge Pump	kW(A)							0.4(1.4)							
LICCIIC	Bur	ner Blower	kW(A)	3.0(6.5)		5.5(13.0)		7.5(15.8)		1	1.0(22.7)			
	C	Dil Pump	kW(A)		0.	55(2.1)						1.1(4.0)					
	Co	ntrol Panel	kW(A)							0.2(0.5)								
	Total	Gas	kW(A)	8.9 (25.1)	1	4 (36.9)		1	8.4 (44.9)		2	5.1 (69.6)				
	Amp.	Oil	kW(A)	9.45	(27.2)	14	.55 (39.0)	1	9.5 (48.9)		20	5.2 (73.6)				
	Le	ength(L)	mm	4,880	4,960	5,100	5,600	6,150	5,750	6,250	6,800	6,200	6,700	7,200	6,900	7,400		
Size	N	/idth(W)	mm	2,5	550		3,150			3,400			4,210		4,6	30		
	н	eight(H)	mm	2,8	300		3,300			3,600			3,600		3,8	800		
Weight	F	Rigging	Ton	12.6	12.8	18 <u>.</u> 1	19.6	21.0	27.9	30.2	32.6	37.8	40.7	43.2	47.5	50 <u>.</u> 0		
weight	0	peration	Ton	14.5	14.8	20.7	22.3	24.0	31.8	34.3	37.0	42.1	45.2	48 <u>.</u> 1	52.7	55 <u>.</u> 6		
Space fo	or Tube	Replacement	mm		4,600		5,200	5,700	5,200	5,700	6,200	5,700	6,200	6,700	6,200	6,700		

SPECIFICATION [WDA-E Series]

Direct Fired Absorption Chiller & Heater

COP 1.36(LHV) Middle-efficiency model

	Мо	del	Unit	WDAE 005	WDAE 006	WDAE 007	WDAE 008	WDAE 010	WDAE 012	WDAE 015	WDAE 018	WDAE 021	WDAE 024	WDAE 028
			usRT	50	60	70	80	100	120	150	180	210	240	280
C	ooiing	capacity	kW	176	211	246	281	352	422	527	633	738	844	984
		c	Mcal/h	133	159	186	212	265	318	398	477	557	636	742
He	eating	Capacity	kW	155	185	216	247	308	370	463	555	648	740	863
	Temp	. (inlet/outlet)) °C					12/7	(Heating 5	5.6 / 60 °C)				
Chilled &		Flow rate	ton/h	30.2	36.3	42.3	48.4	60.5	72.6	90.7	108.9	127.0	145.2	169.3
Hot		P. Drop	mAq	7.6	7.7	5.8	5.4	5.9	6.0	8.0	8.1	7.5	7.4	5.3
Water	С	onnection	mm		8	0			10	00		1	25	150
	Temp	. (inlet/outlet)) °C					1	32 / 37					
Cooling		Flow rate	m³ /h	50	60	70	80	100	120	150	180	210	240	280
Water		P. Drop	mAq	3.5	3.7	8.2	7.7	3.3	3.5	9.6	10.1	5.8	4.7	8.7
	C	onnection	mm	100 125			1	50	200					
		Cooling	Nm³/h	12.1	14.5	17.0	19.4	24.2	29.1	36.3	43.6	50.9	58.2	67.8
Fuel	Gas	Heating	Nm³/h	15.2	18.2	21.2	24.2	30.3	36.3	45.5	54.5	63.6	72.6	84.7
		Connection	n mm		1			40	(4,000mm	ıAq)				
		Cooling	kg/h	16.4	19.7	23.0	26.3	32.9	39.4	49.3	59.2	69.0	78.9	92.0
Fuel	CoolingOilHeating		kg/h	19.5	23.4	27.3	31.2	39.0	46.8	58.6	70.3	82.0	93.7	109.3
		Connection	mm		1	0	1		15	1		2	0	
	Ρον	ver Source						1	3ф 400V 5(0Hz				
	Abs.	Pump No.1	kW(A)		1.2(4	l.0)			2.0 (6	5.0)		2.4(7.0)	3.2(8.5)
	Abs.	Pump No.2	kW(A)		0.3(1	.4)			0.4(1	.5)			1.2(4.0)	
	R	ef. Pump	kW(A)		0.2(1	.2)			0.3(1	.3)			0.4(1.4)	
Electric	Pu	rge Pump	kW(A)					1	0.4 (1.3)				
	Bur	ner Blower	kW(A)	0.37 (1.0)			0.75 (2.1)				1.5 (4.0)		2.2 (5.0)
	Co	ntrol Panel	kW(A)						0.2 (0.5)					
	Тс	otal Amp.	A	9.4	1	10	.5		12.7		14.6	18	.2	20.7
	L	ength(L)	mm	2,62	20	2,8	320	2,660	2,860	3,6	60	3,7	700	4,770
Size	M	/idth(W)	mm		1,80	00		1,9	50	2,075		2,1	10	2,200
	н	eight(H)	mm		1,88	30		2,0	40	2,029		2,3	390	2,390
	F	Rigging	Ton	2.8	3.0	3.3	3.7	4.0	4.2	5.1	5.6	6.4	7.6	8.1
Weight		peration	Ton	3.2	3.4	3.6	4.0	4.8	5.0	6.1	6.7	7.9	8.2	9.1
Space for		Replacement mm 2,000 2,400 3,400							4,500					

Remark 1) 1usRT = 3,024 kcal/h

2) Working Pressure of each water side is based on 1.0MPa [151psig]

3) Nutural Gas LHV(Lower Heating Value) : 9,500kcal/Nm³

4) Fouling factor 0.0001m²h·°C/kcal for Absorber and Condenser, 0.0001m2·h·°C/kcal for Evaporator.

5) Catalogue specifications are subject to change without prior notice.

	Мо	del	Unit	WDAE 032	WDAE 036	WDAE 040	WDAE 045	WDAE 050	WDAE 056	WDAE 063	WDAE 070	WDAE 080	WDAE 090	WDAE 100		
			usRT	320	360	400	450	500	560	630	700	800	900	1000		
Co	ooling	capacity	kW	1,125	1,266	1,406	1,582	1,758	1,969	2,215	2,461	2,813	3,165	3,516		
			Mcal/h	849	955	1,061	1,193	1,326	1,485	1,671	1,856	2,121	2,386	2,651		
He	eating	Capacity	kW	987	1,110	1,234	1,387	1,542	1,727	1,943	2,158	2,466	2,774	3,082		
	Temp	. (inlet/outlet)	°C					12/7	(Heating 5	5.6 / 60 °C))	1				
Chilled &		Flow rate	ton/h	193.5	217.7	241.9	272.2	302.4	338.7	381.0	423.4	483.8	544.3	604.8		
Hot		P. Drop	mAq	5.2	5.7	5.9	5.1	5.3	4.2	5.7	7.6	5.5	7.4	9.7		
Water	С	onnection	mm		150				200				250			
	Temp. (inlet/outlet) °C 32 / 37															
Cooling		Flow rate	m³ /h	320	360	400	450	500	560	630	700	800	900	1000		
Water		P. Drop	mAq	8.8	8.9	8.8	8.6	8.7	6.4	8.8	11.7	9.1	12.3	16.2		
	С	onnection	mm		200		2	50		300			350			
		Cooling	Nm³/h	77.5	87.2	96.9	109.0	121.2	135.7	152.7	169.6	232.6	261.7	290.8		
Fuel	Fuel Gas H		Nm³/h	97.0	109.1	121.2	136.2	151.4	169.6	190.8	211.9	232.1	261.1	290.1		
	Connection		mm					50	(4,000mm	ıAq)						
		Cooling	kg/h	105.2	118.3	131.5	147.9	164.3	184.1	207.1	230.1	263.0	295.8	328.7		
Fuel	Oil	Heating	kg/h	124.9	140.5	156.1	175.7	195.2	218.6	245.9	273.3	262.3	295.1	327.9		
		Connection	mm				20	0					25			
	Pov	ver Source		3ф 400V 50Hz												
	Abs.	Pump No.1	kW(A)	3.2(8.5) 3.4(9.5) 5.5(14.3)									6.6(17)			
	Abs.	Pump No.2	kW(A)	1.2 (4.0)		1.5 (4.8)			2.0 (6.0)			2.2(6.5)			
Electric	Re	ef. Pump	kW(A)					0.4(1.4)					1.5(4.0)			
Electric	Pu	rge Pump	kW(A)						0.4 (1.3)							
	Bur	ner Blower	kW(A)	2.2	(5.0)		3.0 (6.5)			5.5 (13.0)			7.5 (15.8)			
	Со	ntrol Panel	kW(A)						0.2 (0.5)							
	Тс	otal Amp.	А	20.7	22.5		24.0			36.5			45.1			
	L	ength(L)	mm	4,770	4,8	80	4,	970	5,100	5,600	6,110	5,750	6,250	6,800		
Size	N	/idth(W)	mm	2,200	2,3	70	2,	640	3,2	250	3,330		3,400			
	Н	eight(H)	mm	2,454	2,6	600	2,	800		3,400			3,600			
Woight	F	Rigging	Ton	8.7	10.8	11.0	13.2	13.4	18.1	19.6	21.0	27.9	30.2	32.6		
weight	Weight Operation		Ton	9.8	12.3	12.7	15.2	15.5	20.7	22.3	24.0	31.8	34.3	37.0		
Space for	Tube	Replacement	mm			4,	,500			5,200	5,700	5,200	5,700	6,200		

SPECIFICATION [WDA-H Series]

Direct Fired Absorption Chiller & Heater

COP 1.51(LHV) High-efficiency model

	MODEI		Units	WDAH 004	WDAH 005	WDAH 006	WDAH 007	WDAH 008	WDAH 010	WDAH 012	WDAH 015	WDAH 018	WDAH 021	WDAH 024
_			usRT	40	50	60	70	80	100	120	150	180	210	240
Cool	ing cap	acity	kW	141	176	211	246	281	352	422	527	633	738	844
			Mcal/h	106	133	159	186	212	265	318	398	477	557	636
Heat	ting Ca	pacity	kW	123	155	185	216	247	308	370	463	555	648	740
	Temp.	(inlet/outlet)	°C		1	1		12 / 71	Heating 5	5.6 / 60)				
Chilled &	Fl	ow rate	m³/h	24.2	30.2	36.3	42.3	48.4	60.5	72.6	90.7	108.9	127.0	145.2
Hot Water		P.Drop	mAq	4.8	5.5	4.1	4.3	4.0	4.3	5.4	5.8	5.7	5.8	4.0
	Connection mm				80				100			12	25	150
	Temp.	(inlet/outlet)	°C						32 / 37					
Cooling	Fl	ow rate	m³/h	40	50	60	70	80	100	120	150	180	210	240
Water	I	P.Drop	mAq	5.4	6.0	5.9	6.0	4.3	4.8	6.4	7.3	7.3	7.8	6.6
Connection		nnection	mm	100				125				15	50	200
		Cooling	Nm³/h	8.9	11.2	13.4	15.7	17.9	22.4	26.8	33.6	40.3	47.0	53.7
Fuel	Gas	Heating	Nm³/h	11.6	14.5	17.4	20.4	23.3	29.1	34.9	43.6	52.3	61.1	69.8
		Connection	mm					40 (4	4,000mm <i>I</i>	(p/				
	Pow	er Source	_					3φ	400V 501	Hz				
	Abs.	Pump No.1	kW(A)		1.2 (4.	0)			2.0 (6.0)		2.4 (7	.5)	3.0 (11.0)
	Abs.	Pump No.2	kW(A)		0.3 (1.	6)			0.4 (1.6)			1.2 (4.5)
D1 (Re	ef.Pump	kW(A)		0.2 (1.	1)			0.3 (1.5)			0.4 (1.5)
Electric	Pur	ge Pump	kW(A)					1	0.4 (1.4)					
	Burn	ier Blower	kW(A)	0.37	(1.0)			0.72 (2.1)			1.5 (4.0))	2.2 (5.0)
	Con	trol Panel	kW(A)						0.2 (0.5)					
	То	tal Amp.	kW(A)	2.67	(9.6)	3.055	(10.7)	4	.05 (13.1))	4.8 (15.0)	6.1 (19.4)	7.4 (23.9)
	Le	ength(L)	mm	2,6	30	2,70	00	2,80	00	3,6	60	3,70	00	4,770
Size	W	idth(W)	mm	1,8	40	1,84	0		1,970		2,075	2,10	00	2,200
	He	eight(H)	mm		1,97	8			2,15	50		2,50	00	2,510
Weight	F	Rigging	Ton	2.8	3.0	3.3	3.7	4.0	4.2	5.1	5.6	6.4	7.6	8.1
weight	OI	peration	Ton	3.2	3.4	3.6	4.0	4.8	5.0	6.1	6.7	7.9	8.2	9.1
Space for	pace for Tube Replacement mm			2,0	000		2,40)0			3,40	400		4,500

Remark 1) 1usRT = 3,024 kcal/h

- 2) Working Pressure of each water side is based on 1.0MPa [151psig]
- 3) Nutural Gas LHV(Lower Heating Value) : 9,500kcal/Nm³, Diesel Oil LHV(Lower Heating Value) : 9,200kcal/kg
- 4) Fouling factor $0.0001m^2 \cdot h \cdot ^{\circ} / kcal$ for Absorber and Condenser, $0.0001m^2 \cdot h \cdot ^{\circ} / kcal$ for Evaporator.
- 5) Catalogue specifications are subject to change without prior notice.

	MODE	EL	Units	WDAH 028	WDAH 032	WDAH 036	WDAH 040	WDAH 045	WDAH 050	WDAH 056	WDAH 063	WDAH 070	WDAH 080	WDAH 090
Caali		o oitu	usRT	280	320	360	400	450	500	560	630	700	800	900
0001	ing cap	acity	kW	984	1,125	1,266	1,406	1,582	1,758	1,969	2,215	2,461	2,813	3,165
Hoat	ing Car	agity	Mcal/h	742	849	955	1,061	1,193	1,326	1,485	1,671	1,856	2,121	2,386
пеа	ing ca	Jacity	kW	863	987	1,110	1,234	1,387	1,542	1,727	1,943	2,158	2,466	2,774
	Temp	. (inlet/outlet) °C					12 / 7 H	leating 55	5.6 / 60℃))			
Chilled &	Fl	ow rate	m³/h	169.3	193.5	217.7	241.9	272.2	302.4	338.7	381.0	483.8	544.3	604.8
Hot Water	1	P.Drop	mAq	4.1	4.6	4.9	3.8	4.2	3.4	4.6	6.3	4.3	6.0	8.1
	Со	nnection	mm		150				200				250	
	Temp	. (inlet/outlet) °C						32 / 37					
Cooling	Fl	ow rate	m³/h	280	320	360	400	450	500	560	630	700	800	900
Water	I	P.Drop	mAq	6.9	7.3	7.3	6.8	7.0	5.2	7.2	9.7	7.2	10.0	13.4
	Connection		mm		200		25	0		300			350	
		Cooling	Nm³/h	62.6	71.6	80.5	89.5	100.7	111.8	125.3	140.9	156.6	178.9	201.3
Fuel	Gas	Heating	Nm³/h	81.4	93.0	104.7	116.3	130.8	145.4	162.8	183.2	232.6	261.7	290.8
		Connection	mm			40 (4,00	OmmAq)				50	(4,000mr	nAq)	
	Pow	er Source						3φ	400V 501	Hz				
	Abs.	Pump No.1	kW(A)	3.0 (11.0) 3.4 (10.2)						5.5 (14.5)		6.6 (16.2)
	Abs.	Pump No.2	kW(A)	1.2(4.5)		1.5	(5.0)			2.0 (6.0)			2.2 (7.0)	
	Re	ef.Pump	kW(A)				0.4	(1.5)					1.5 (4.0)	
Electric	Pur	ge Pump	kW(A)						0.4	(1.4)				
	Burn	er Blower	kW(A)	2.2	(5.0)		3.0 (6.5)			5.5 (13.0))		7.5 (15.8)
	Con	trol Panel	kW(A)						0.2	(0.5)				
	То	tal Amp.	kW(A)	7.4(23.9)	8.1(23.6)		8.9(25.1)		14(36.9)			18.4(44.9))
	Le	ngth(L)	mm	4,770	4,8	70	4,9	00	5,100	5,600	6,150	5,750	6,250	6,800
Size	W	idth(W)	mm	2,200	2,300	2,430	2,6	50		3,150			3,400	
	He	eight(H)	mm	2,510	2,6	40	2,9	00		3,394			3,720	
XX7 · 1 ·	F	Rigging	Ton	8.7	10.8	11.0	13.2	13.4	18.1	19.6	21.0	27.9	30.2	32.6
Weight	OI	peration	Ton	9.8	12.3	12.7	15.2	15.5	20.7	22.3	24.0	31.8	34.3	37.0
Operation Space for Tube Replacement			mm	4.500					5,200	5,700	5,200	5,700	6,200	

Double Lift Hot Water Absorption Chiller

75RT ~ 1500RT 27 Models Hot Water Temp. : 95°C->55°C (ΔT40°C)

WDLE / Stable, Convenient, Efficient and Reliable

Non-carbon eco-friendly chiller

- Use of regional heating hot water (Energy use efficiency 84%. The ratio of incineration heat of the combined waste heat 74%)
- Use of natural refrigerant water instead of Freon refrigerant destroying ozone layer
- No CO2 and Nox which cause the global warming

Zero explosive danger by vacuum operation

- Internal pressure vacuum
- No danger of gas explosion by use of hot water
- Safety from the danger of high-pressure damage

The excellent partial load part-load value

- Auxiliary cycle auto stop if the cooling load is below 80%
- Energy saving by 25% per chilled ton due to the increase in the efficiency by 25%

Low noise & Low vibration

• Noise level: Below 75 dB at 1m distance

IPLV(Integrated Part-Load Value)

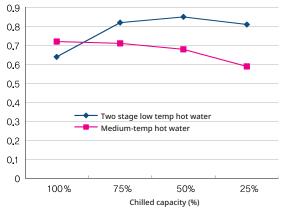
Single	Chilled water inlet °C	Cooling capacity	СОР	Part Load rate	IPLV
effect	31.0	100%	0.64	0.01	
double	29.8	75%	0.82	0.42	0.83
lift type	28.8	50%	0.85	0.45	0.65
	28.0	25%	0.81	0.12	
	Chilled water inlet °C	Cooling capacity	COP	Part Load rate	IPLV
Single	31.0	100%	0.72	0.01	
effect	29.9	75%	0.71	0.42	0.68
type	29.1	50%	0.68	0.45	0.00
	28.1 25% 0.59 0.12				

Chilled water outlet temp keeps at 8°C and hot water inlet temp keeps at 95°C
 Assuming that the ambient humid temp is 27°C for the chilled water inlet temp, it was designed to be lower depending on the hot water flow rate.

Part load rate is subject to the paragraph 5.3.2.2 of AR1560-2000

Economic air-conditioniong

- Conventional Chiller: ∆ 15 °C (95°C -> 80°C)
 Insufficient heating hot water
- Sing-effect/ Double-lift Chiller: Δ 40 °C (95°C -> 55°C)
 Saving 60% of the existing hot water use capacity
 Wide range of the use


Micro processor control with only start-up signal for automatic operation

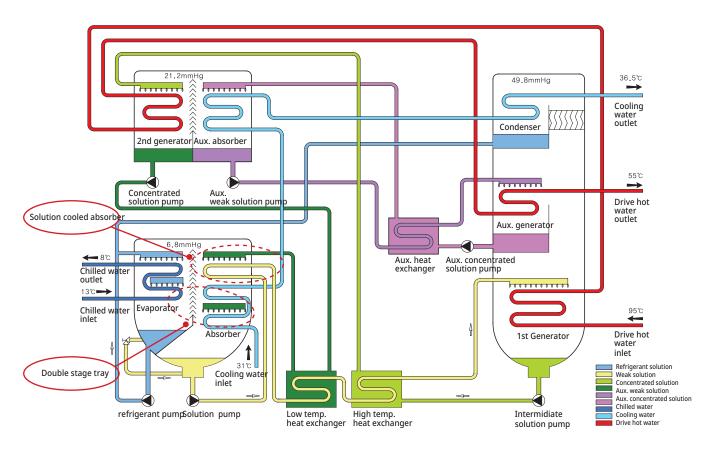
- Precise control of start-up, stop, capacity control, abnormal stop, etc.
- Easy to handle due to the touch screen
- Control of auxiliary cycle, self-diagnostic function & other controls

Saving maintenance cost

- Leakage per month: 3cc or below. High vacuum condition
- Auto steam extraction. Non-condensing gas storage
- Optimal condition of the operation
- Operating with only minimum purging

Comparison of partial load COP

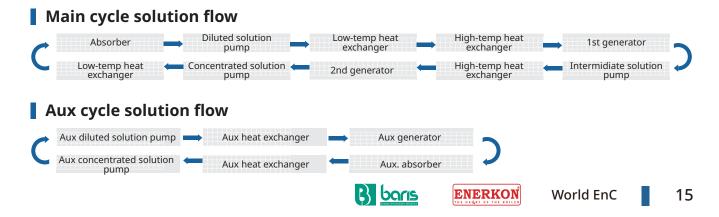
ENERKON



World EnC

CYCLE DIAGRAM

Double Lift Hot Water Absorption Chiller



As the refrigerant is evaporated from the evaporator, the chilled water flowing inside the heating tube of the evaporator is cooled down and the refrigerant evaporated is absorbed by the concentrated absorbing liquid from the 2nd generator. The concentrated absorbing liquid will become thick absorbing liquid and the heat generate will be absorbed by the chilled water. The thick absorbing liquid which absorbed the refrigerant steam from the absorbing unit will go to the 1st generator passing through the low-temp and high-temp heat exchangers. The hot water at 95°C in the 1st generator will heat the thick absorbing liquid to generate the refrigerant steam and then it flows to the 2nd generator after passing through the high-temp heat exchanger. The medium concentrated thick absorbing liquid comes from the 2nd generator will be heated by the hot water coming from the 1st generator and it generates the refrigerant steam.

The refrigerant steam generated from the 2nd generator will be absorbed by the absorbing liquid flowing outside the heat tube and the thick absorbing liquid which absorbed the refrigerant steam from the aux absorbing unit will flow to the aux generator after passing through aux heat exchanger, so that it is heated by the hot water flowing the heat tube of the aux generator to generate the refrigerant steam. Then, the concentrated absorbing liquid is returned back to the aux absorbing unit after passing through the aux heat exchanger.

The refrigerant steam generated from the 1st generator and the aux generator will condense the refrigerant with the leakage of the chilled water inside the heat tube and then it absorbs the heat generated.

That is, the hot water flows the 1st generator \rightarrow 2nd generator \rightarrow aux generator while the chilled water flows absorbing unit \rightarrow aux absorbing unit \rightarrow condenser in order to form a chilled cycle. In addition, the low-temp hot water two stage absorbing chiller has main cycle and aux cycle and the details of the solution (liquid) flow are as below.

SPECIFICATION [WDLE Series]

Double Lift Hot Water Absorption Chiller

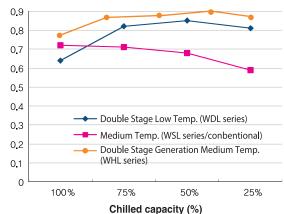
	Model	Unit	WDLE 75	WDLE 90	WDLE 110	WDLE 135	WDLE 155	WDLE 180	WDLE 210	WDLE 240	WDLE 270	WDLE 300	WDLE 340	WDLE 375
		usRT	75	90	110	135	155	180	210	240	270	300	340	375
Coo	ling capacity	kW	264	317	387	475	545	633	739	844	950	1055	1196	1319
	Temp. (inlet/outlet)	°C						12	/7					
Chilled	Flow rate	m∛h	45.4	54.4	66.5	81.6	93.7	108.9	127.0	145.2	163.3	181.4	205.6	226.8
Water	P. Drop	mH ₂ O	6.7	6.9	10.0	10.7	9.8	9.8	9.9	9.7	10.2	10.2	8.9	9.5
	Connection	A		80	10	0		12	25		15	50	20	0
	Temp. (inlet/outlet)	°C						32	/ 37					
Cooling	Flow rate	m∛h	98.3	117.9	144.1	176.9	203.1	235.9	275.2	314.5	353.8	393.1	445.5	491.4
Water	P. Drop	mH ₂ O		6.7	10.6	10.9	11.6	12.1	1	1.9		11.1		11.2
	Connection	mm		125		15	0		20	00		25	50	
	Temp.	°C						95	/ 55					
Duitainen	Flow rate	ton/h	7.8	9.3	11.4	14.0	16.1	18.6	21.7	24.9	28.0	31.1	35.2	38.8
Driving Hot	Shell P. Drop	mH ₂ O	2.8	2.8	4.2	4.4	4.5	4.5	5.4	5.3	4.1	4.3	5.2	5.3
Water	Control Valve	mH ₂ O	1.6	2.3	2.2	2.1	2.8	2.3	2.0	2.7	2.1	2.6	2.1	2.6
	Connection	А	65					8	30			1	00	
	Control Valve Size	А		40			50			6	55		8	0
	Power Source							3Φ 40	00V 50Hz					
	Abs. Pump	kW (A)	3.0 (1	1.9)	3.7 (13.3)	4.0 (14.1)	4.5 (15.3)	4.7 (15.3)	5.1 (17.1)
Electric	Ref. Pump	kW (A)	0.2	(1.2)		0. 3 (1	.4)				0.4 (1.4)		
	Purge Pump	kW (A)						0.4	4 (1.3)					
	Control Panel	kW (A)						0.2	2 (0.5)					
	Total Amp.	А	1	4.9	16	.5	17	.3	18	.5	18	.5	20	.3
	Length(L)	mm	2,	670	3,66	54	3,71	5	4,76	50	4,8	72	4,8	34
Size	Width(W)	mm		1,	702			1,84	45		2,0	96	2,2	73
	Height(H)	mm		2,	556			2,7	10		2,7	88	3,1	18
Weight	Rigging	ton	4.5	4.7	5.8	6.1	7.3	7.7	9.0	9.4	11.5	12.0	13.8	14.3
	Operation	ton	5.2	5.4	6.7	7.1	8.6	9.1	10.6	11.1	13.7	14.4	16.5	17.2
Space for	Tube Replacement	mm					00		4,600					

	Model	Unit	WDLE 420	WDLE 470	WDLE 525	WDLE 600	WDLE 675	WDLE 750	WDLE 825	WDLE 900	WDLE 975	WDLE 1050	WDLE 1125	WDLE 1300
6	line constitu	usRT	420	470	525	600	675	750	825	900	975	1050	1125	1300
	ling capacity	kW	1477	1653	1846	2110	2374	2638	2901	3165	3429	3693	3957	4572
	Temp. (inlet/ou	tlet) °C			1			12	/7					
Chilled	Flow rate	m∛h	254.0	284.3	317.5	362.9	408.2	453.6	499.0	544.3	589.7	635.0	680.4	786.2
Water	P. Drop	mH ₂ O	8.6	3.9	5.2	9.9	4.4	5.9	4.2	5.4	6.8	5.2	6.4	5.9
	Connection	A		200			250					300		
	Temp. (inlet/ou	tlet) °C						32	/ 37					
Cooling	Flow rate	m∛h	550.3	615.9	687.9	786.2	884.5	982.7	1081.0	1179.3	1277.6	1375.8	1474.1	1703.4
Water	P. Drop	mH₂O	8.0	10.9	12.6	10.7	12.4	14.4	11.6	7.9	9.9	6.6	8.1	11.9
	Connection	mm		300			350			400			450	
	Temp.	°C						95	/ 55					
	Flow rate	ton/h	43.5	48.7	54.4	62.1	69.9	77.7	85.4	93.2	101.0	108.7	116.5	134.6
Driving Hot	Shell P. Drop	mH₂O	3.7	3.8	2.9	4.3	5.8	3.1	2.8	3.5	4.3	3.7	4.3	5.5
Water	Control Va	alve mH ₂ O	2.0	2.6	1.4	1.9	2.3	2.9	1.6	1.9	2.3	2.6	3.0	2.2
	Connection	A		100				12	25				150	
	Control Valve S	Size A	80			1(00			125				150
	Power Sourc	e						3Φ 400	V 50Hz					
	Abs. Pump	kW (A)		5.8 (18.8)		7.8 (22.5)	10(30	.9)		10.6 (34.8))		14.8 (49.3))
Electric	Ref. Pump	kW (A)		0.4	(1.4)				1	1.5	(4.0)			
LIECUIC	Purge Pump	kW (A)						0.4	(1.3)					
	Control Pane	el kW (A)						0.2	(0.5)					
	Total Amp.	A		22		25.7	36	.7		40.6			55.1	
	Length(L)	mm	4,994	5,536	6,034	5,650	6,180	6,705	6,505	7,005	7,505	7,050	7,700	8,700
Size	Width(W)	mm		2,446	1		2,770	1		3,565	1		3,980	
	Height(H)	mm		3,468			3,740			4,194			4,380	
Weight	Rigging	ton	19.4	21.1	22.6	27.2	29.3	31.3	37.1	39.2	41.6	45.2	48.4	56.0
	Operation	ton	23.5	25.5	27.4	32.2	34.7	37.0	44.0	46.4	49.3	53.7	57.5	66.5
Space for	Tube Replacem	ient mm	4,600	5,200	5,700	5,200	5,700	6,200	5,700	6,200	6,700	6,300	6,800	7,800

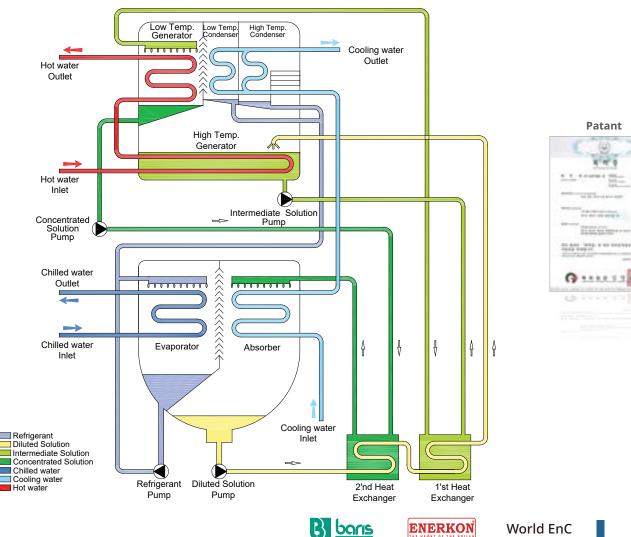
Double Stage Hot Water Absorption Chiller

30RT ~ 300RT 13 Models Hot Water Temp. : 95°C->75°C (ΔT20°C)

Hot Water temp. $95^{\circ}C \rightarrow 75^{\circ}C$


Economic Air-Condition

Chiller Type			Temp. ^{Outlet}	Temp. Gap
Conventional (General Chiller)	95℃	+	80°C	∆ 15°C
WORLD EnC (New Developed Chiller)	95°C	+	75°C	<mark>∆ 20°</mark> C


IPLV Graph

ENERKOŇ

World EnC

Cycle Diagram

SPECIFICATION [WHL Series]

Double Stage Hot Water Absorption Chiller

	MODEL	UNIT	WHL 30	WHL 40	WHL 50	WHL 75	WHL 90	WHL 110	WHL 135	WHL 155	WHL 180	WHL 210	WHL 240	WHL 270	WHL 300	
		kW	105	141	176	264	316	387	474	545	633	738	844	949	1,054	
C	Cooling Capacity	usRT	30	40	50	75	90	110	135	155	180	210	240	270	300	
	Temp. (inlet/outlet)	Ĵ							12/7						·	
Chilled	Flow Rate	m³/h	18.1	24.2	30.2	45.4	54.4	66.5	81.6	93.7	109.0	127.0	145.0	163.0	181.4	
Water	Pressure Drop	mH2O	7.3	8.3	7.0	6.4	6.8	9.6	10.5	9.5	9.6	9.7	9.5	10.2	10.5	
	Connection Size	mm		65		80		1	00		1:	25		15	50	
	Temp. (inlet/outlet)	Ĵ				32 / 37										
Cooling	Flow Rate	m³/h	37.1	49.5	61.9	92.8	111.3	136.1	167.0	240.2	222.7	259.8	296.9	334.0	371.1	
Water	Pressure Drop	mH ₂ O	8.9	9.8	12.0	8.4	8.8	8.0	8.7	12.0	8.5	7.5	7.6	7.5	7.3	
	Connection Size	mm		80		100		1	25	1	50	20	00	25	50	
	Temp.	Ĵ		95 / 75												
	Flow Rate	ton/h	4.5	6.0	7.6	11.3	13.6	16.6	20.4	23.4	27.2	31.8	36.3	40.8	45.4	
TT .	Pressure Shell	mH ₂ O	1.6	2.0	3.4	3.1	3.2	4.3	4.8	4.3	4.3	5.1	4.9	4.9	4.7	
Hot Water	Drop Control Valve	e mH ₂ O	2.2	1.5	1.0	2.2	2.1	3.1	1.9	2.5	3.3	1.8	2.3	3.0	1.4	
	Connection Size	mm	65							8	0		10	00		
	Control Valve Size	mm	25 40				5	50		65			80		100	
	Power Source	-							3Φ 400V 50Hz							
	Abs. Pump	kW (A)		1.6 (6.6)	1.8	8 (7.2)	2.1	(8.2)	2.8	8 (9.2)		3.2	(10.2)		
	Ref. Pump	kW (A)			0.2 (1.	1)			0.3 (1.5)		0.4 (1.5)				
Electic	Purge Pump	kW (A)		0.4 (1.4)												
	Control Panel	kW (A)							0.2 (0.5)							
	Total Ampere	kW (A)		2.4 (9.6)		2.6 (1	0.2)	3 (1	1.6)	3.7 (12.6)		4.2 (13.6)		
	Length[L]	mm	-	2,052	2,552	2,6	05	3,6	680	3,7	710	4,7	740	4,7	780	
Size	Width[W]	mm		1,351			1,3	370			1,5	20		1,8	310	
	Height [H]	mm		2,133			2,3	370		2,4		.430		2,670		
	Rigging	ton	2.2	2.3	2.8	4.0	4.2	5.1	5.3	6.1	6.4	7.5	7.8	9.7	10.1	
Weight	Operating	ton	2.6	2.7	3.3	4.7	4.9	5.7	5.9	6.8	7.1	8.3	8.7	10.8	11.2	

Remark 1) 1usRT = 3,024 kcal/h

2) Available max. working pressure of chilled water /cooling water/hot water : 1.0MPa

3) Fouling factor 0.0001 ${\rm \mathring{m}h}{\rm \mathring{C}/kcal}$ for Absorber and Condenser, $0.0001^{2}{\rm \mathring{m}}{\rm \mathring{C}/kcal}$ for Evaporator and Generator.

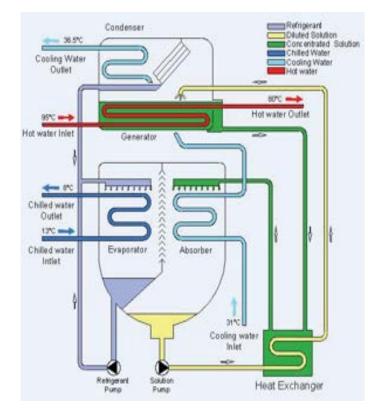
4) Catalogue specifications are subject to change without prior notice.

Hot Water Absorption Chiller 75RT ~ 1125RT 27 Models

1. Compact and Energy saving Design

With using high efficiency heat tube, smaller and lighter design to conventional things. Installation space also gets decreased.

2. Easy operation and convenience


Full automatic system with up-to -date control technology such as operation, setting, monitoring, and control flow chart.

WSL / Hot Water Absorption

3. Safe and efficient chiller

Being operated in vacuum condition, it keeps internal pressure in vacuum status even in stop mode. With 2 pumps for solution and refrigerant, it is totally quiet. No noise and No vibration.

Hot water Absorption chiller operation flow chart

4. Maintenance cost reduction and only one purging during a season

Optimized operation condition and trouble-free system under strict manufacturing standard: 1 x 10 -6 atm.cc/sec leakage for a month.

5. High performance Automatic Purge system

An automatic purge unit to collect into a purge tank remaining Non-condensable gases in system and purge tank for storing Non-condensable gases make long time operation without manual purging.

SPECIFICATION [WSL Series]

Hot Water Absorption Chiller

Hot water inlet temp. 95°C

	Model	Unit	WSL75	WSL90	WSL110	WSL135	WSL155	WSL180	WSL210	WSL240	WSL270	WSL300		
Chille	ed water temp. at in-outlet	°C					12.	17						
Cod	oling capacity	usRT	70	85	103	122	141	169	198	226	254	282		
ater	Flow rate	m³/h	42.3	51.4	62 <u>.</u> 3	73 <u>.</u> 8	85.3	102.2	119.8	136.7	153.6	170 <u>.</u> 6		
Chilled water	Pressure drop	mAq	7.8	8.5	7.5	7.4	7.0	7.9	7.5	7.9	7 <u>.</u> 8	8.0		
Ğ	Pipe size	mm	8	0	10	00		12	25		15	50		
ater	Flow rate	m³/h	92.5	112 <u>.</u> 3	136.1	161.1	186_2	223 <u>.</u> 2	261.5	298.5	335.5	372.5		
Cooling water	Pressure drop	mAq	10.1	9 <u>.</u> 8	4 <u>.</u> 7	4 <u>.</u> 2	4.6	4.8	9.7	9.5	9.3	9.0		
°C C	Pipe size	mm	12	25		15	50			20	00			
	Flow rate	m³/h	19 <u>.</u> 6	23.8	28 <u>.</u> 8	34.2	39.5	47.3	55.4	63.3	71 <u>.</u> 1	79 <u>.</u> 0		
Hot water	Pressure drop	mmAq	0.9	0.9	0.4	0.5	0.5	0.5	1.1	1 <u>.</u> 1	1.0	1.0		
Hot v	Pipe size	mm	6	5		8	0			10	00			
	Valve size	mm	50	6	5		80			1(00			
	Power	-					3ф 400\	/ 50Hz						
ţ	Solution Pump	KW(A)		1.5(4.7A)		2.0(6 <u>.</u> 1A)	2.4(7.3A)					
Electricity	Refrigerant Pump	kW(A)			0.3(1.7A)				0.4(1.7A)			
ш	Purge Pump	-					0.4(1.5A)						
	Total Ampere	kW(A)		2.2	(7.9)		2.7 ((9.3)		3.2 (1	10.5)			
Ę	Length	mm	2,6	640	3,6	680	3,6	86	4,7	'44	4,7	76		
Dimension	Width	mm	1,2	244	1,2	244	1,3	69	1,3	865	1,4	95		
Ō	Height	mm	2,2	255	2,2	255	2,3	89	2,3	89	2,5	575		
	Equipment weight	Ton	3.6	3.7	4.6	4.8	5.8	6.0	7.0	7.3	9.0	9.4		
Weigh	Operation weight	Ton	4 <u>.</u> 1	4.3	5.3	5.6	6.7	7 <u>.</u> 1	8.2	8.7	10 <u>.</u> 6	11 <u>.</u> 1		
	Conveyance	-					One	e body						

Remark 1) Standard pressure:

Cooling and Chilled water:0.8Mpagf(8kgf/cm2G), Hot water standard pressure:1.6Mpa(16kgf/cm2G)

2) Chilled water standard TEMP:Inlet: 12°C, Outlet :7°C Cooling water standard TEMP: Inlet: 32℃, Outlet : 37℃

3) Hot water standard TEMP: Inlet: 95℃, Outlet :80℃.

4) Power standard : 400V, 3Phase,50Hz,(220,440,460V also available)

5) The specification could be changed without any notice.

SPECIFICATION [WSL Series]

Hot Water Absorption Chiller

Hot water inlet temp. 95°C

	Model	Unit	WSL340	WSL375	WSL420	WSL470	WSL525	WSL600	WSL675	WSL750	WSL825				
Chille	ed water temp. at in-outlet	°C					12-7								
	bling capacity	usRT	320	360	399	446	494	569	641	712	783				
er	Flow rate	m³/h	193 <u>.</u> 5	217 <u>.</u> 7	241 <u>.</u> 3	269 <u>.</u> 7	298 <u>.</u> 8	344 <u>.</u> 4	387 <u>.</u> 4	430 <u>.</u> 5	473 <u>.</u> 5				
Chilled water	Pressure drop	mAq	7.1	7.6	6.0	8.1	3.5	2.5	3.5	4.6	3.5				
Chill	Pipe size	mm			200				250		300				
ter	Flow rate	m³/h	422 <u>.</u> 7	475.5	527 <u>.</u> 0	589.1	652.5	752.1	846.1	940.2	1034.21				
Cooling water	Pressure drop	mAq	9.4	9.8	6.8	9 <u>.</u> 2	12.1	8.9	12 <u>.</u> 0	15 <u>.</u> 9	16 <u>.</u> 2				
Cool	Pipe size	mm	25	50		300			350		400				
	Flow rate	m³/h	89.6	100 <u>.</u> 8	111 <u>.</u> 7	124.98	138 <u>.</u> 3	159 <u>.</u> 4	179.4	199 <u>.</u> 3	219.2				
ater	Pressure drop	mAq	1.0	1.0	1.0	1.4	1.9	1.2	1.5	2.1	2.3				
Hot water	Pipe size	mm			125				150		200				
	Valve size	mm			125			150		200					
	Power	-		3φ 400V 50Hz											
	Solution Pump	k₩(A)	2.4(7.3A)		4.5(16.2A)									
Electricity	Refrigerant Pump	k₩(A)			1	1.5(4.0A)									
Ē	Purge Pump	-					0.4(1.5A)								
	Total Ampere	kW(A)	3.2 (10.5)			3.8 (1	3.2)			5.3 (21.7)				
c	Length	mm	4,7	'80	4,870	5,410	5,910	5,618	6,116	6,641	7,141				
Dimension	Width	mm	1,5	95		1,955			2,2	200					
Din	Height	mm	2,8	350		3,150									
	Equipment weight	Ton	10 <u>.</u> 7	11 <u>.</u> 7	14 <u>.</u> 9	16 <u>.</u> 2	17 <u>.</u> 4	20 <u>.</u> 8	22 <u>.</u> 5	24 <u>.</u> 0	28 <u>.</u> 3				
Weigh	Operation weight	Ton	12.7	13.2	18.0	19 <u>.</u> 6	21.0	25.0	27 <u>.</u> 0	28.8	34 <u>.</u> 0				
>	Conveyance	-					One Body	/							

Option In different heat source and operation, the conditions can be selected as an option.

1) When the water pressure different from the standard.

2) When heat tube material is not copper nor with different tickness.

3) When Hot/cooling/chilled water temp. are different from standard.

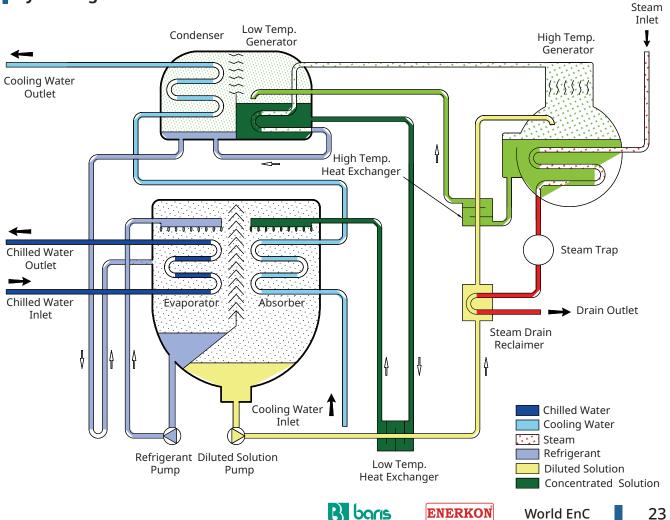
Steam Fired Absorption Chiller

100RT ~ 1500RT 23 Models

WSA / Double Effect Steam Fired Absorption Chiller

Eco friendly and energy-saving design

WSA uses steam as the energy resource, LiBr as absorbent and water as refrigerant. With use of eco friendly materials, WSA does not raise the carbon dioxide which causes the global warming. The cost for electricity and operation can be saved in the area where steam is enough to use.


Reliable and efficient operation

WSA is designed to enhance the reliability and durability. Inverter control of absorbent depending on cooling load makes efficient operation.

Intelligent operation system

Micro process control realizes precise control and efficient operation of the unit. And the user can operate the unit easily on the touch screen.

Steam Consumption: 3.5kg/h·RT ~ 4.4kg/h·RT

Cycle Diagram

SPECIFICATION [WSA Series]

Steam Fired Absorption Chiller

	Model	Unit	WSA 010	WSA 012	WSA 015	WSA 018	WSA 021	WSA 024	WSA 028	WSA 032	WSA 036	WSA 040	WSA 045
		usRT	100	120	150	180	210	240	280	320	360	400	450
C	ooling capacity	kW	352	422	528	633	739	844	985	1,125	1,266	1,407	1,583
	Temp. (inlet/outlet)	°C						12/7		1	1		
Chilled	Flow rate	ton/h	60 <u>.</u> 5	72.6	90.7	108 <u>.</u> 9	127 <u>.</u> 0	145.2	169 <u>.</u> 3	193 <u>.</u> 5	217 <u>.</u> 7	241.9	272.2
Chilled Water	P. Drop	mAq	6.5	6.4	8 <u>.</u> 0	8.3	7.5	7 <u>.</u> 9	5.1	5.5	5.8	6 <u>.</u> 1	5 <u>.</u> 2
	Connection	mm		1(00		12	25		15	50		
	Temp. (inlet/outlet)	°C						32/37					
Casling	Flow rate	m³/h	100	120	150	180	210	240	280	320	360	400	450
Cooling Water	P. Drop	mAq	3.9	4.4	6.5	7.7	5.6	6.2	10.9	12.1	8.7	9 <u>.</u> 4	10.3
	Connection	mm		12	25		1	50			200		
	Flow rate	kg/h	440	530	660	790	920	1060	1230	1410	1580	1760	1980
0	Steam Inlet onnect.	А		5	60			6	5			80	
Steam	Drain Outlet onnect.	А				2	5					40	
	Control Valve Size	А	25			40					50		
	Power Source		3ф 400V 50Hz										
	Abs. Pump #1	kW(A)		2 <u>.</u> 0	(6.0)		2.4	(7.5)	3 <u>.</u> 0 (11.0)	3.4(10.2)	3.4
	Abs. Pump #2	kW(A)		0.4	(1.6)		1.2 (4.5)			1 <u>.</u> 5 (5			1.5
Electric	Ref. Pump	kW(A)		0 <u>.</u> 3	(1.5)		0.4(1.5)						
	Purge Pump	kW(A)					0.4 (1.4)						
	Control Panel	kW(A)			·			0.2 (0.5)					
	Total Ampere	kW(A)		3.3 (11.0)		4.6 (15.4) 5.2 (18.9)				1	5.9 (18.6)	
	Length (L)	mm	2,632	2,832	3,6	644	3,6	670	4,7	720	4,8	360	4,910
Size	Width (W)	mm		1,7	775			1,8	380		2,1	10	2,250
	Height (H)	mm		2,0	030			2,3	300		2,5	50	2,780
Mid alo	Rigging	Ton	3.9	4.1	5.1	5.2	6.2	6.4	7.7	8.0	9.8	10.1	11 <u>.</u> 8
Widght	Operation	Operation Ton		4.5	5 <u>.</u> 6	5.8	6.9	7 <u>.</u> 2	8.6	9 <u>.</u> 0	11 <u>.</u> 0	11 <u>.</u> 4	13.5
Space for	or Tube Replacement	mm	2,4	100		3,4	100				4,500		

Remark 1) 1usRT = 3,024 kcal/h

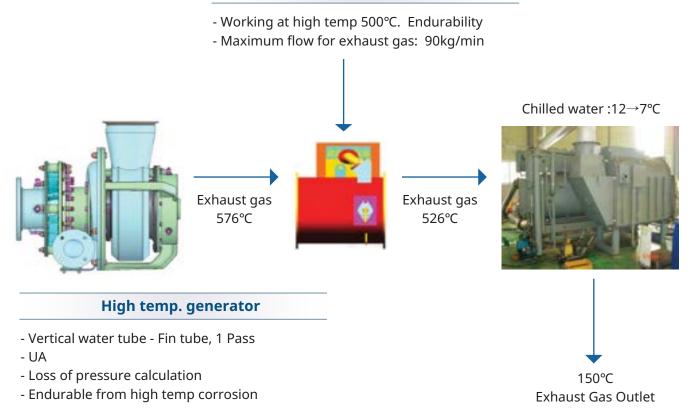
2) Standard Steam Pressure is 0.8M

3) Working Pressure of chilled water and cooling water side is based on 1.0MPaPa

4) Fouling factor $0.0001m2 \cdot h \cdot ^{\circ}C/kcal$ for Absorber and Condenser, $0.0001m2 \cdot h \cdot ^{\circ}C/kcal$ for Evaporator.

5) Catalogue specifications are subject to change without prior notice.

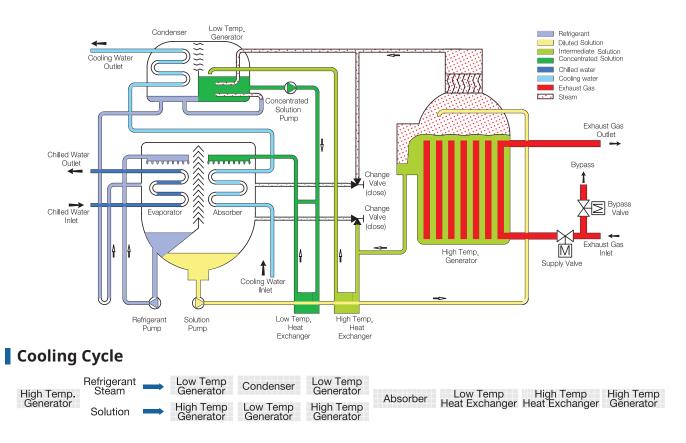
	Model	Unit	WSA 050	WSA 056	WSA 063	WSA 070	WSA 080	WSA 090	WSA 100	WSA 110	WSA 120	WSA 130	WSA 140	WSA 150
		usRT	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500
C	ooling capacity	kW	1,758	1,969	2,216	2,462	2,814	3,165	3,517	3,869	4,220	4,572	4,924	5,275
	Temp. (inlet/outlet)	°C						12	/7					
Obilled	Flow rate	ton/h	302.4	338 <u>.</u> 7	381.0	423.4	483.8	544.3	604.8	665.3	725 <u>.</u> 8	786.2	846.7	907 <u>.</u> 2
Chilled Water	P. Drop	mAq	5 <u>.</u> 5	4.6	6 <u>.</u> 2	8 <u>.</u> 1	4 <u>.</u> 7	6 <u>.</u> 4	8 <u>.</u> 4	6.2	7 <u>.</u> 9	9 <u>.</u> 8	8 <u>.</u> 0	9 <u>.</u> 8
	Connection	mm		200				250			300		3	50
	Temp. (inlet/outlet)	ĉ						32,	/37					
Casling	Flow rate	m³/h	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500
Cooling Water	P. Drop	mAq	11.2	7.1	9.4	12 <u>.</u> 1	8.4	11.1	14 <u>.</u> 3	8 <u>.</u> 8	10 <u>.</u> 9	13 <u>.</u> 4	12 <u>.</u> 3	14 <u>.</u> 6
	Connection mm		250 300		350			1	400					
	Flow rate	kg/h	2200	2460	2770	3080	3520	3960	4400	4840	5280	5720	6160	6600
010.000	Steam Inlet onnect.	А	80	80 100				125				150		
Steam	Drain Outlet onnect.	А	40 50					65				80		
	Control Valve Size	А		65			6	30				100		
	Power Source			3ø 400V 50Hz										
	Abs. Pump #1	kW(A)	3.4(10.2)		5.5 (20.	C)	6.6 (16.2)					7.5 (25.	C)	
	Abs. Pump #2	kW(A)	1.5 (5.0)		2.0 (6.0))		2.2 (7.0)	4.5 (16.0)				
Electric	Ref. Pump	kW(A)		0.4(1.5)		1.5 (4.0)							
	Purge Pump	kW(A)						04	(1.4)					
	Control Panel	kW(A)						0.2 (0.5)					
	Total Ampere	kW(A)	5.9 (18.6)		8.5 (29.4)		1	10.9 (29.1)		1	14.1 (46.9)	
	Length (L)	mm	4,910	5,040	5,580	6,080	5,720	6,220	6,740	6,150	6,670	7,170	6,830	7,330
Size	Width (W)	mm	2,250		2,480			2,825			3,000		3,	250
	Height (H)	mm	2,780		3,255			3,400			3,600		3,	650
Midalat	Rigging	Ton	12.1	16.6	18 <u>.</u> 1	19 <u>.</u> 4	24.6	26.3	28.3	31 <u>.</u> 8	33.9	35.8	39 <u>.</u> 6	41 <u>.</u> 8
Widght	Operation	Ton	13 <u>.</u> 9	19_2	20 <u>.</u> 8	22 <u>.</u> 3	28 <u>.</u> 7	30 <u>.</u> 7	32.8	36.4	38 <u>.</u> 8	40 <u>.</u> 9	45.3	47 <u>.</u> 7
Space for	or Tube Replacement	mm	4,50	00	5,200	5,700	5,200	5,700	6,200	5,700	6,200	6,700	6,200	6,700


Exhaust Gas Absorption Chiller & Heater

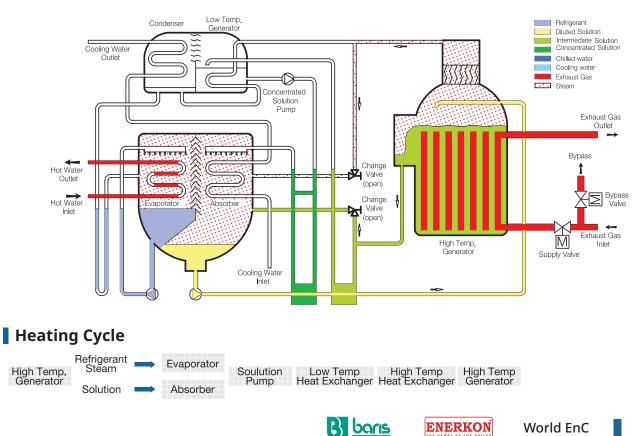
100RT ~ 1500RT 23 Models

- 1. Waste exhaust gas can be used for drive heat source.
- 2. Convertible use of cooling and heating
- 3. Energy saving product
- **4.** Increase in the efficiency of total energy
- 5. No power overload in summer season
- **6.** Environment-friendly to use water as refrigerant

Development of diverter valve



World EnC


CYCLE DIAGRAM

Exhaust Gas Absorption Chiller & Heater

Cooling Cycle Diagram

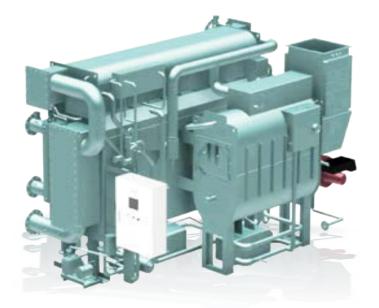
Heating Cycle Diagram

SPECIFICATION [WEG Series]

Exhaust Gas Absorption Chiller & Heater

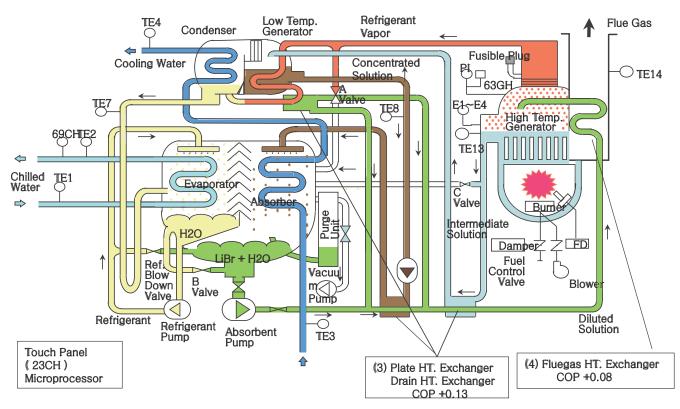
Model		I	Unit	WEG 010	WEG 012	WEG 015	WEG 018	WEG 021	WEG 024	WEG 028	WEG 032	WEG 036	WEG 040	WEG 045	
C (a a aitu a	usRT	100	120	150	180	210	240	280	320	360	400	450	
	ooling cap	Jacity	kW	351	422	527	633	738	844	984	1,125	1,265	1,406	1,582	
Цa	oting on	a a aitu	Mcal/h	283	340	425	510	595	680	793	906	1019	1133	1274	
Πŧ	Heating capacity		kW	329	395	494	592	691	790	922	1053	1185	1317	1481	
	Temp. (inlet/outlet)	ĉ		12/7										
Chiiled	Flow rate		m³/h	60.5	72.6	90.7	109	127	145	169	194	218	242	272	
Water	P.	Drop	mAq	4.8	5.1	6.6	7.0	6.4	6.3	4.6	4.5	5.0	5.1	4.4	
	Cor	inection	mm		100 125 150										
	Temp. (inlet/outlet)	ĉ						32/37						
Caslina	Flo	ow rate	m³/h	100	120	150	180	210	240	280	320	360	400	450	
Cooling Water	P.	Drop	mAq	11.1	11.3	11.5	11 <u>.</u> 8	11 <u>.</u> 8	12.1	11.2	10 <u>.</u> 7	11.1	10 <u>.</u> 8	10.7	
	Connection mm		mm	125 150 20							200 250				
	Temp.		kg/sec	0.88	1.05	1.32	1.58	1.84	2.11	2.46	2.81	3 <u>.</u> 16	3.51	3.95	
	Temp.	Cooling	Ĉ	450/165											
Exhaust	Heating		°C	450/125											
Gas	P.	Drop	mmAq	77	82	79	92	97	113	129	131	123	131	133	
	Outlet Conn mm		mm		40	00			50	00			600		
	Diver	ter Valve	mm	400 50						00			600		
	Powe	er source	-	3φ 400V 50Hz											
	Abs	s. Pump	kW(A)		2.0(5.7) 2.4(6.1)							3.4(9.0)			
Electric	Ref	. Pump	kW(A)			0.3(1	.5)				0.4(1.6)				
LIECUIC	Purg	je Pump	kW(A)						0.4(1.4)						
	Cont	rol Pump	KVA						0.2(0.5)						
	Amp.	(400 Vac)	kW(A)		2.9(9.10)			3.4(9.6)			4.4(12.5)		
	Ler	ngth (L)	mm	2,5	597	3,6	680	3,6	86	4,7	744	4,7	776	4,954	
Size	Wie	dth (W)	mm	1,662	1,740	1,857	1,935	2,150	2,189	2,267	2,375	2,270	2,309	2,491	
	Hei	ight (H)	mm		1,9	979			2,3	803		2,4	470	2,744	
Weight	Ri	igging	mm	5.0	5.3	6.4	6.8	7.9	8.5	9.8	10.3	12 <u>.</u> 8	13.2	15 <u>.</u> 7	
weight	Ор	eration	Ton	5.4	5.8	7.0	7.4	8.6	9.3	10.7	11.3	14.0	14.6	17 <u>.</u> 2	
Tube	exchang	le space	Ton	2,4	100		3,4	100				4,500			

Remark Working Pressure of each water side is based on 1.0Mpu(150psig.)



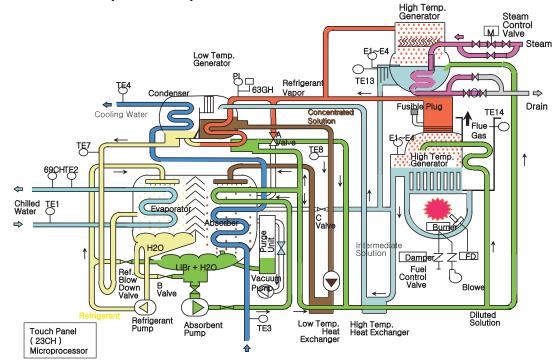
	Mode	I	Unit	WEG 050	WEG 056	WEG 063	WEG 070	WEG 080	WEG 090	WEG 100	WEG 110	WEG 120	WEG 130	WEG 140	WEG 150	
			usRT	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500	
Co	ooling cap	bacity	kW	1,757	1,968	2,214	2,460	2,812	3,163	3,515	3,866	4,218	4,569	4,921	5,272	
			Mcal/h	1416	1586	1784	1982	2266	2549	2832	3115	3398	3682	3965	4248	
He	Heating capacity		kW	1646	1843	2074	2304	2633	2962	3291	3621	3950	4279	4608	4937	
	Temp. (inlet/outlet)	Ĵ		12/7											
<u>.</u>	Flo	w rate	m³/h	302	339	381	423	484	544	605	665	726	786	847	907	
Chiiled Water	P.	Drop	mAq	3 <u>.</u> 9	3.6	5 <u>.</u> 0	6.6	4.7	6.4	8 <u>.</u> 5	7 <u>.</u> 2	9 <u>.</u> 2	11 <u>.</u> 5	8 <u>.</u> 3	10 <u>.</u> 2	
	Con	nection	mm		2	00			250			300		3	50	
	Temp. (inlet/outlet)	Ĵ						32/	37						
	Flo	w rate	m³/h	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500	
Cooling Water	P.	Drop	mAq	10 <u>.</u> 8	7.7	10 <u>.</u> 6	14 <u>.</u> 0	8.7	11 <u>.</u> 8	15 <u>.</u> 6	3.0	3.8	4.8	4.0	4.9	
	Connection		mm	250		300			350		400					
	Temp.		kg/sec	4 <u>.</u> 39	4 <u>.</u> 92	5 <u>.</u> 53	6 <u>.</u> 15	7 <u>.</u> 03	7 <u>.</u> 91	8 <u>.</u> 78	9 <u>.</u> 66	10 <u>.</u> 54	11 <u>.</u> 42	12.30	13 <u>.</u> 18	
	Cooling	°C		450/165												
Exhaust	Temp.	Heating	ĉ						450/	125						
Gas	P.	Drop	mmAq	134	143	133	146	155	153	176	213	221	212	206	184	
	Out	et Conn	mm	600	600 750 1000											
	Diver	ter Valve	mm	600	600 750								1000			
	Powe	er source			3φ 400V 50Hz											
	Abs	. Pump	kW(A)	3.4(9.0)	3.4(9.0) 5.5(14.3)							7.5 (21.9)				
	Ref	. Pump	kW(A)		0.40	(1.6)					1.5	(3 <u>.</u> 8)				
Electric	Purg	le Pump	kW(A)			0.4	(1.4)	<u> </u>					0.7 (2.2	2)		
	Cont	ol Pump	KVA						0.2(0.5)							
	Amp.	(400 Vac)	kW(A)	4.4(12.5)		6.5 (17.8)	,	7.6 (20.0)		9	.95 (28.4)		
	Ler	igth (L)	mm	4,954	4,998	5,540	6,038	5,460	5,958	6,483	6,293	6,818	7,318	6,974	7,475	
Size	Wid	dth (W)	mm	2,569	2,934	3,069	3,459	3,330	3,480	3,530	4,348	4,448	4,598	4,932	5,182	
	Hei	ght (H)	mm	2,744		3,057			3,390			3,678		3,7	00	
	Ri	gging	mm	16 <u>.</u> 5	21 <u>.</u> 2	23 <u>.</u> 1	24 <u>.</u> 6	31 <u>.</u> 0	33 <u>.</u> 6	35 <u>.</u> 6	41.1	43 <u>.</u> 4	46.4	50 <u>.</u> 2	54.1	
Weight	Ор	eration	Ton	18 <u>.</u> 1	23 <u>.</u> 7	25 <u>.</u> 8	27.5	34.8	37.6	39.9	46.2	48 <u>.</u> 8	52 <u>.</u> 1	56.5	60.8	
Tube	exchang	e space	Ton	4,	500	5,200	5,700	5,200	5,700	6,200	5,700	6,200	6,700	6,200	6,700	

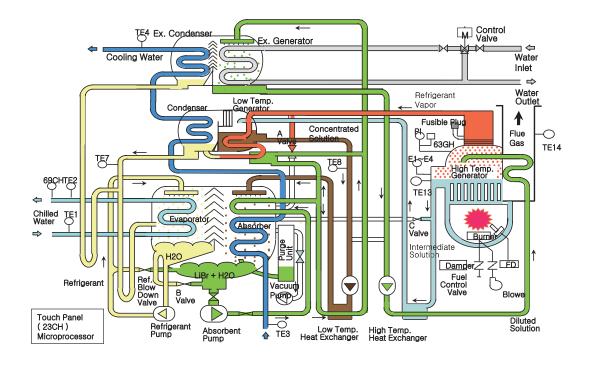
Multi-Fuel Absorption Chiller & Heater


100RT ~ 1000RT

This model is designed to use different energy resource for cooling and heating. Exhaust gas, steam and hot water can be used with gas or oil.

Heat resource: Natural Gas, Oil, Steam, Hot Water

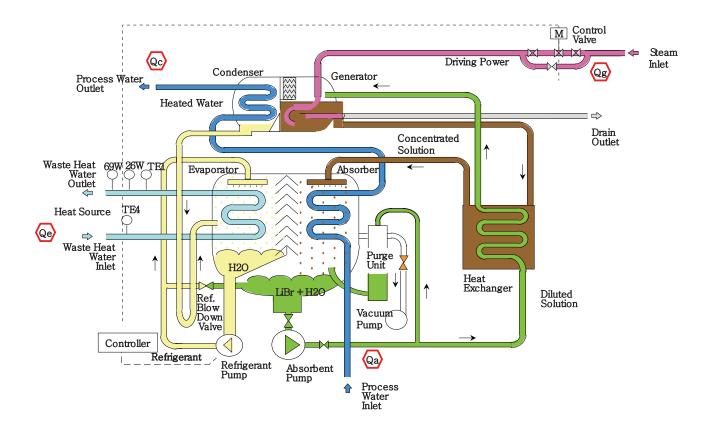

Cycle Diagram



30

Gas & Steam Fired (Dual Fuel)

Gas & Water Fired (Dual Fuel)

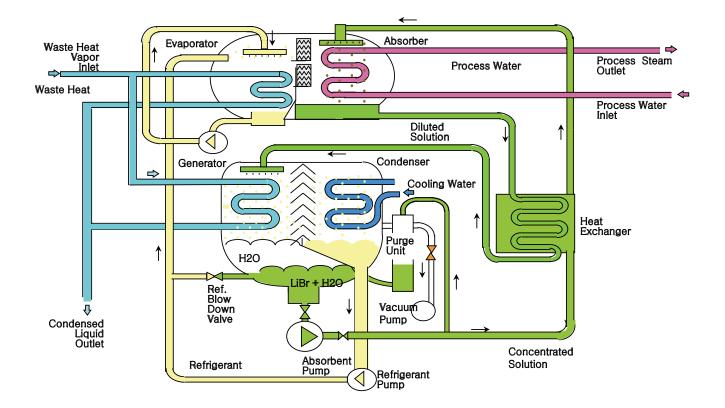


Absorption Heat Pump developed to produce medium temperature energy by using high temperature energy resource such as steam, hot water and exhaust gas and low temperature waste heat energy.

This Absorption Heat Pump can be used to supply hot water for heating in a building or to supply hot water in the process of factory by using waste heat resource.

Cycle Diagram(Heated Water)

Generator	Vapor is generated from heat supplied by driven hot water and the generated vapor is moved into Condenser.
Condenser	The vapor is condensed on the tubes and the heat is transferred to hot water inside the tubes.
Evaporator	The evaporator takes evaporating heat from the waste hot water and the evaporated vapor moves into Absorber.
Absorber	The evaporated vapor is absorbed into concentrated solution coming from a generator and the heat is transferred to process hot water.



ABSORPTION HEAT PUMP

Absorption Heat Transformer developed to produce high temperature energy by using medium temperature energy resource in the process of factory. This Absorption Heat Transformer can be used in the plants that have high temperature waste heat resource to recycle it.

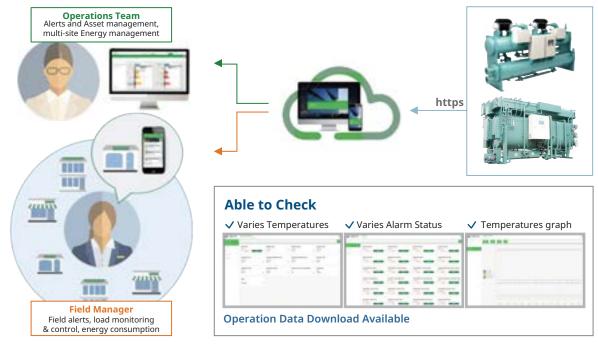
Cycle Diagram(Steam Gene.)

Generator Vapor is generated from heat supplied by driven hot water and the generated vapor is moved into Condenser.
 Condenser The vapor is condensed on the tubes and the heat is transferred to hot water inside the tubes.
 Evaporator The evaporator takes evaporating heat from the waste hot water and the evaporated vapor moves into Absorber.
 Absorber The evaporated vapor is absorbed into concentrated solution coming from a generator and the heat is transferred to process hot water.

Control System

Care of Service Convenience & Customer Satisfaction

- Latest PLC with 10 inch touch screen, remote control and BAS compatible
- Increase chiller's efficiency with precise PID control
- Applicable for Modbus, Ethernet, BAC Net TCP/IP
- Chiller's status can be monitored through PLC Web connection (Option)


You can have the innovative technology through WORLD EnC only

PLC

- Operation history will be saved for 168 hours once every 10 seconds
- Increase the saving period up to 6 months once every 5 seconds with 2GB SD momery card (Option)
- Alarm history will be stored continuously from the initial chiller operation (unless deleted)

Web Mornitoring

- 1. Possible to check real-time and past data for temperature, alarm and operation of various job sites and remotely control various set values.
- Field and building managers use the Web Monitoring system to check and control the data for 24 hours a day, 365 days a year on PC & Mobile devices.
- **3.** By using the Web Monitoring system, it is possible to monitor the alarm value in real-time of the chiller anywhere (work, home, even on the move), then detect abnormalities that occur during operation, and respond immediately.

FIELD INSTALLED

World Enc

Korea

Government Complex in Sejong City Administrative Complex Hot water / 600RT 8 units

Incheon International Airport Hot water / 975RT 8 units

Gimpo Airport Sky Park Hot water / 700RT 13 units

Lotte Chemical Daesan Plant Hot water / 1,300RT 3 units, 975RT 1 unit

Heungdeok IT Valley Hot water / 825RT 2 units, 270RT 2 units, 155RT

Lotte Department Store Dongtan Hot water / 820RT 10 units, 280RT 2 units

Pangyo Mtek Vision Office Hot water / 600RT 3 units, 340RT 10 units

Lotte Mart Suwon Branch Direct Fired / 700RT 6 units

Lotte Chemical Yeosu Plant Hot water / 525RT 2 units, Steam 1100RT

Korea Zinc Onsan Refinery Steam / 500RT 2 units

Inha University Hospital Direct Fired / 800RT 4 units

Dongtan Hallym University Hospital Hot water / 900RT 2 units

FIELD INSTALLED

World Enc

Korea

Galleria Department Store Gwanggyo Hot water / 750RT 6 units, 190RT 2 units

Songdo Landmark Prugio City Hot water / 600RT 2 units, 400RT units, 200RT units

Magok Genexine Handok RND Center Hot water / 600RT 2 units, 380RT 2 units, 135 / 110RT

Changdong Station Cultural Industrial Complex Complex Direct Fired / 560RT 4 units

Gwangmyeong Lotte Outlet Hot water / 600RT 7 units. 135RT 2 units

Homeplus Sosa Direct Fired / 600RT 5 units

Homeplus Suwon Homesil Hot water / 600RT 2 units

Hot water / 575RT 2 units, 525RT 2 units

E-Mart (Paju Unjeong / Asan Baebang) Lakeside Gwanggyo Residential Complex Hot water / 675RT 2 units, 525RT 2 units

Hot water / 470RT 2 units, 340RT 4 units

Direct Fired / 500RT 2 units

Lotte Songdo Residential Complex Lotte Cheongna Residential Complex POSCO Gwanggyo Residential Complex Hot water / 525RT 3 units, 135RT 2 units

Italy / Mexico / Germany

New Treviso Hospital in Italy Hot water / 420RT 1 unit

Pordenone Hospital in Italy Hot water / 210RT 2 units

IBI Pharmaceutical Spa in Italy Hot water / 180RT 1 unit

Vetropack in Italy Hot water / 155RT 2 units

FOE HOTEL ALBA in Italy Hot water / 135RT 1 unit

SYMBIOSIS MILANO in Italy Hot water / 75RT 1 unit

Hotel in Brescia in Italy Hot water / 75RT 1 unit

Catapult Factory in Mexico Hot water / 110RT 1 unit

HEWMEG in Germany Hot water / 900RT 1 unit, 600RT 2 units

3M – Hilden in Germany Hot water / 240RT 1 unit

Militeny Biotec in Germany Hot water / 90RT 2 units

Tornow in Germany Hot water / 75RT 1 unit

FIELD INSTALLED

Poland / Iran / Pakistan

JEDRUS in Poland Hot water / 90RT 2 units

Hospital Trigen in Poland Hot water / 60RT 2 units

PGNiG in Poland Direct Fired / 180RT 1 unit

Żołynia in Poland Direct Fired / 60RT 2 units

Lexon Tower in Iran Direct Fired / 630RT 2 units

Bahar Hospital in Iran Steam Fired / 500RT 2 units

Tehran Hospital in Iran Direct Fired / 360RT 1 unit

R&D Center in Iran Direct Fired / 240RT 1 unit

NEE in Pakistan Direct Fired / 1400RT 2 units

PSPC/SPC in Pakistan Direct Fired / 500RT & 360RT

Karachi Hospital in Pakistan Hot water / 375RT 1 unit

Hotel OA in Pakistan Hot water / 240RT 1 unit

www.worldenc.com

www.enerkonmuhendislik.com.tr

World EnC

- H.Q & Factory 102, Dolseoji-gil, Jangan-myeon, Hwaseong-si, Gyeonggi-do, Korea
- Sales OfficeDigital Empire B-dong 1207-ho, 383, Simin-daero, Dongan-gu, Anyang-si, Gyeonggi-do, KoreaTel:+82-70-4099-7559Fax:+82-31-8066-5230

H.Q & Factory	Adana Organize Sanayi Bölgesi, Magarsuz Caddesi, No:8 Adana/Türkiye
	Tel: +90 (322) 456 14 14 E-mail: info@barismuhendislik.com.tr
Istanbul Office	Barbaros mahallesi. Halk Caddesi Palladium Residence A Blok No: 8A/3 Ataşehir/Istanbul
	Tel: +90 (216) 663 11 04