World EnC Absorption Chiller

B) baris ENERKON (il) World EnC

World EnC Co.,Ltd.

THE BEST SOLUTION FOR ABSORPTION CHILLER

ENERKON
(ui) World EnC

CONTENTS

By continuing challenge, We will open the eco-friendly future.

World EnC Absorption Chiller

We challenge, innovate and strive to satisfy our customers with the best value by providing the most pleasant environment and happiness for the mankind based on our accumulated technology. The compay being advanced backed up by customer's encouragement and trust.

The company always seeking innovation with the sense of responsibility and future-oriented mind. We commit ourselves to taking our full responsibility as a new leader of the future energy industry based on the best quality and the latest technology.

CE Certificate

ISO 14001
Environmental Management

High Efficiency Energy Equipment

CE Certificate

ISO 45001 Certificate

| ISO 14001 |
| :--- | :--- |
| Certificate |

THE HE ART OF THE BOILER

Brief History

2023 Development Oil-Free Centrifugal Chiller : Danfoss/Turbocor Compressor 2-3 comp (200~600RT)
2022 Development Oil-Free Centrifugal Chiller : Danfoss/Turbocor Compressor 1 comp (80~200RT)

2021

$$
\text { Acquired } 3 \text { patents for vapor compression chiller (Flooded evaporator, high efficiency condenser, oil recovery function) }
$$ Begin to development of vacuum hot water boiler

Acquired high efficiency Certi. of Screw Chiller (Water coolded-134a)
Initiate development of High Efficiency Screw Chiller
Initiate national project of development of Heat Pump and transformer
Initiate national project of development of Absorption Chiller

Registration license of making specific facility, Certificate of venture company
Establish research affiliated with World E\&C (Korea industrial technology promotion association)
Certificate ISO 9001 / 9002
Business for high temperature generator in Direct Fired Absorption Chiller\&Heater Establish World EnC

ENERKON
THE HEQRT OFTHEBOILER
(ui) World EnC
05

Direct Fired Absorption Chiller \& Heater
 50RT ~ 1500RT 29 Models

CE

1. High reliability

- Designed to enhance the reliability and durability
- Robust structure through the perfect reliability test for long time and higher reliability by adopting high quality components

2. Efficient operation

- Energy saving and efficiency realized
- Optimal control for the solution cycling volume by inverter depending on the cooling load
- Optimal PID control by sensing the operating condition with the level sensor
- Minimized power consumption due to precise operation and partial load operation [Option] Early reduction, Anti-freezing, Refrigerant generation, Solution refining, Tube ball clean, Crystal forming prevention from power failure

3. Convenient partition

- Repair and maintenance is easy. Multi-partition structure
- Mounting/detaching structure for easy repair and maintenance
- Partial incoming to make it possible for field work such as remodeling at narrow space. Assembling at field is possible.

4. Low noise and low vibration

- Below 75 dB at 1 m distance for noise level

Features of WDA Series

5. Perfect vacuum

- High performance \& purge system.

Cost-efficiency for maintenance

- Leakage for one month at below 3cc.

High vacuum condition

- Auto purge. / Non-condensing gas storage
- Maintaining optimal operating condition.

Operation with only minimum steam extraction.

6. Enough capacity

- Heating capacity increase system
- Designed to increase up to 3 stages from the standard.

7. Latest operation

- Latest PLC, remote control and BAS compatible
- Increase chiller's efficiency with precise PID control
- Applicable for Modbus, Ethernet, BAC Net TCP/IP
- 10 inch touch screen and possible for VNC communication
- Chiller's status can be monitored through PLC Web connection (Option)

ENERKON
THE HEART OF THE BOILER

1
 CYCLE DIAGRAM

Direct Fired Absorption Chiller \& Heater

| Cooling Cycle Diagram

| Heating Cycle Diagram

The hevrtof the boiler
07

SPECIFICATION [WDA Series]

Direct Fired Absorption Chiller \& Heater

COP 1.1(LHV)

MODEL			UNIT	$\begin{aligned} & \text { WDA } \\ & 005 \end{aligned}$	$\begin{gathered} \text { WDA } \\ 006 \end{gathered}$	$\begin{aligned} & \text { WDA } \\ & 007 \end{aligned}$	$\begin{gathered} \text { WDA } \\ 008 \end{gathered}$	$\begin{aligned} & \text { WDA } \\ & 010 \end{aligned}$	$\begin{aligned} & \text { WDA } \\ & 012 \end{aligned}$	$\begin{aligned} & \text { WDA } \\ & 015 \end{aligned}$	$\begin{gathered} \text { WDA } \\ 018 \end{gathered}$	$\begin{aligned} & \text { WDA } \\ & 021 \end{aligned}$	$\begin{aligned} & \text { WDA } \\ & 024 \end{aligned}$	$\begin{gathered} \text { WDA } \\ 028 \end{gathered}$	$\begin{aligned} & \text { WDA } \\ & 032 \end{aligned}$	$\begin{gathered} \text { WDA } \\ 036 \end{gathered}$	$\begin{array}{\|c\|} \text { WDA } \\ 040 \end{array}$
Cooling capacity			usRT	50	60	70	80	100	120	150	180	210	240	280	320	360	400
			kW	176	211	246	281	352	422	528	633	739	844	985	1,125	1,266	1,407
Heating Capacity			Mcal/h	151	181	212	242	302	363	454	544	635	726	847	968	1,089	1,210
			kW	176	211	246	281	352	422	528	633	739	844	985	1,125	1,266	1,407
$\begin{gathered} \text { Chilled } \\ \& \\ \text { Hot } \\ \text { Water } \end{gathered}$	Temp	(inlet/outlet)	${ }^{\circ} \mathrm{C}$	12/7 (Heating 55/60 ${ }^{\circ} \mathrm{C}$)													
		Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	30.2	36.3	42.3	48.4	60.5	72.6	90.7	108.9	127.0	145.2	169.3	193.5	217.7	241.9
		P.Drop	mAq	7.6	7.7	5.8	5.4	5.9	6.0	8.0	8.1	7.5	7.4	5.3	5.2	5.7	5.9
		onnection	mm	80				100				125		150			
Cooling Water	Temp	(inlet/outlet)	${ }^{\circ} \mathrm{C}$	32/37													
		Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	50	60	70	80	100	120	150	180	210	240	280	320	360	400
		P. Drop	mAq	3.5	3.7	8.2	7.7	3.3	3.5	9.6	10.1	5.8	4.7	8.7	8.8	8.9	8.8
	Connection		mm	100				125				150		200			
Fuel	Gas	Cooling	$\mathrm{Nm}^{3} / \mathrm{h}$	15.9	19.1	22.3	25.5	31.8	38.2	47.7	57.3	66.8	76.4	89.1	101.9	114.6	127.3
		Heating	$\mathrm{Nm}^{3} / \mathrm{h}$	18.9	22.7	26.5	30.2	37.8	45.4	56.7	68.0	79.4	90.7	105.9	121.0	136.1	151.2
		Connection	mm	40 (4,000mmAq)													
	Oil	Cooling	kg/h	16.4	19.7	23.0	26.3	32.9	39.4	49.3	59.2	69.0	78.9	92.0	105.2	118.3	131.5
		Heating	kg/h	19.5	23.4	27.3	31.2	39.0	46.8	58.6	70.3	82.0	93.7	109.3	124.9	140.5	156.1
		Connection	mm	10				15			20						
Electric	Power Source		-	$3 \Phi, 400 \mathrm{~V}, 50 \mathrm{~Hz}$													
	Abs. Pump No. 1		kW(A)	1.2(4.0)				2.0(6.0)				2.4(7.5)		3.0(11.0)		3.4(10.2)	
	Abs. Pump No. 2		kW(A)	0.3(1.6)				$0.4(1.6)$				1.2(4.5)				1.5(5.0)	
	Ref. Pump		kW(A)	0.2(1.1)				0.3(1.5)				$0.4(1.5)$					
	Purge Pump		kW(A)	0.4(1.4)													
	Burner Blower		kW(A)	0.37 (1.0)		0.75(2.1)					1.5(4.0)			2.2(5.0)		3.0 (6.5)	
	Oil Pump		kW(A)	-				0.24(0.6)			0.55(2.1)						
	Control Panel		kW(A)	0.2(0.5)													
	Total Amp.	Gas	kW(A)	2.67 (9.6)		3.05 (10.7)		4.05 (13.1)			4.8(15.0)	6.1 (19.4)		7.4 (23.9)		8.1(23.6) 8.9(25.1)	
		Oil	kW(A)	2.67 (9.6)		3.05 (10.7)		4.29 (13.7)			5.35(17.1)	19.95 (21.5)		7.95 (26.0)		$8.65(25.7) 9.45(27.2)$	
Size	Length(L)		mm	2,630		2,700		2,853		3,644		3,696		4,782		4,867	
	Width(W)		mm	1,840		1,840		1,940		2,051		2,102		2,200		2,287	
	Height(H)		mm	1,910				2,020				2,390				2,585	
Weight	Rigging		Ton	2.7	2.9	3.1	3.5	3.8	4.0	4.9	5.3	6.1	7.2	7.7	8.3	10.3	10.5
	Operation		Ton	3.0	3.2	3.4	3.8	4.6	4.8	5.8	6.4	7.5	7.8	8.7	9.3	11.7	12.1
Space for Tube Replacement			mm	2,000		2,400				3,400				4,600			

- Remark 1) 1 usRT $=3,024 \mathrm{kcal} / \mathrm{h}$

2) Working Pressure of each water side is based on 1.0 MPa [151psig]
3) Nutural Gas LHV(Lower Heating Value) : $9,500 \mathrm{kcal} / \mathrm{Nm}^{3}$, Diesel Oil LHV(Lower Heating Value) : $9,200 \mathrm{kcal} / \mathrm{kg}$
4) Fouling factor $0.0001 \mathrm{~m}^{2} \cdot \mathrm{~h} \cdot{ }^{\circ} \mathrm{C} / \mathrm{kcal}$ for Absorber and Condenser, $0.0001 \mathrm{~m}^{2} \cdot \mathrm{~h} \cdot{ }^{\circ} \mathrm{C} / \mathrm{kcal}$ for Evaporator.
5) Catalogue specifications are subject to change without prior notice

THE HEART OF THE BOILER
08

MODEL			UNIT	$\begin{aligned} & \text { WDA } \\ & 045 \end{aligned}$	$\begin{aligned} & \text { WDA } \\ & 050 \end{aligned}$	$\begin{aligned} & \text { WDA } \\ & 056 \end{aligned}$	$\begin{gathered} \text { WDA } \\ 063 \end{gathered}$	$\begin{gathered} \text { WDA } \\ 070 \end{gathered}$	$\begin{aligned} & \text { WDA } \\ & 080 \end{aligned}$	$\begin{aligned} & \text { WDA } \\ & 090 \end{aligned}$	$\begin{gathered} \text { WDA } \\ 100 \end{gathered}$	$\begin{gathered} \text { WDA } \\ 110 \end{gathered}$	$\begin{gathered} \text { WDA } \\ 120 \end{gathered}$	$\begin{aligned} & \text { WDA } \\ & 130 \end{aligned}$	$\begin{gathered} \text { WDA } \\ 140 \end{gathered}$	$\begin{gathered} \text { WDA } \\ 150 \end{gathered}$
Cooling capacity			usRT	450	500	560	630	700	800	900	1,000	1,100	1,200	1,300	1,400	1,500
			kW	1,583	1,758	1,969	2,216	2,462	2,814	3,165	3,517	3,869	4,220	4,572	4,924	5,275
Heating Capacity			Mcal/h	1,361	1,512	1,693	1,905	2,117	2,032	2,286	2,540	2,794	3,048	3,302	3,556	3,810
			kW	1,583	1,758	1,969	2,216	2,462	2,363	2,659	2,954	3,250	3,545	3,840	4,136	4,431
$\begin{gathered} \text { Chilled } \\ \& \\ \text { Hot } \\ \text { Water } \end{gathered}$	Temp	(inlet/outlet)	${ }^{\circ} \mathrm{C}$	12/7 (Heating 55/60 ${ }^{\circ} \mathrm{C}$)												
		Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	272.2	302.4	338.7	381.0	423.4	483.8	544.3	604.8	665.3	725.8	786.2	846.7	907.2
		P.Drop	mAq	5.1	5.3	4.2	5.7	7.6	5.5	7.4	9.7	7.4	9.4	11.7	9.4	11.5
		onnection	mm	200					250			300			350	
Cooling Water	Tem	(inlet/outlet)	${ }^{\circ} \mathrm{C}$	32/37												
		low rate	$\mathrm{m}^{3} / \mathrm{h}$	450	500	560	630	700	800	900	1,000	1,100	1,200	1,300	1,400	1,500
		P.Drop	mAq	8.6	8.7	6.4	8.8	11.7	9.1	12.3	16.2	12.3	15.7	7.2	12.8	15.7
	Connection		mm	250		300			350			400				
Fuel	Gas	Cooling	$\mathrm{Nm}^{3} / \mathrm{h}$	143.2	159.2	178.3	200.5	222.8	254.7	286.5	318.3	350.1	382.0	413.8	445.6	477.5
		Heating	$\mathrm{Nm} /{ }^{3}$	170.1	189.0	211.7	238.2	264.6	254.0	285.8	317.6	349.3	381.1	412.8	444.6	476.3
		Connection	mm	50 (4,000mmAq)								65 (4,000mmAq)				
	Oil	Cooling	kg/h	147.9	164.3	184.1	207.1	230.1	263.0	295.8	328.7	361.6	394.4	427.3	460.2	493.0
		Heating	kg/h	175.7	195.2	218.6	245.9	273.3	262.3	295.1	327.9	360.7	393.5	426.3	459.1	491.9
		Connection	mm	20					25							
Electric	Power Source			$3 \Phi, 400 \mathrm{~V}, 50 \mathrm{~Hz}$												
	Abs. Pump No. 1		kW(A)	3.4(10.2)		5.5(14.5)			6.6 (16.2)			7.5 (25.0)				
	Abs. Pump No. 2		kW(A)	1.5 (5.0)		2.0 (6.0)			2.2 (7.0)			4.5 (16.0)				
	Ref. Pump		kW(A)	0.4(1.5)					1.5(4.0)							
	Purge Pump		kW(A)	0.4(1.4)												
	Burner Blower		kW(A)	3.0(6.5)		5.5(13.0)			7.5(15.8)			11.0(22.7)				
	Oil Pump		kW(A)	0.55(2.1)					1.1 (4.0)							
	Control Panel		kW(A)	$0.2(0.5)$												
	Total Amp.	Gas	kW(A)	8.9 (25.1)		14 (36.9)			18.4 (44.9)			25.1 (69.6)				
		Oil	kW(A)	9.45 (27.2)		14.55 (39.0)			19.5 (48.9)			26.2 (73.6)				
Size	Length(L)		mm	4,880	4,960	5,100	5,600	6,150	5,750	6,250	6,800	6,200	6,700	7,200	6,900	7,400
	Width(W)		mm	2,550		3,150			3,400			4,210			4,630	
	Height(H)		mm	2,800		3,300			3,600			3,600			3,800	
Weight	Rigging		Ton	12.6	12.8	18.1	19.6	21.0	27.9	30.2	32.6	37.8	40.7	43.2	47.5	50.0
	Operation		Ton	14.5	14.8	20.7	22.3	24.0	31.8	34.3	37.0	42.1	45.2	48.1	52.7	55.6
Space for Tube Replacement			mm	4,600			5,200	5,700	5,200	5,700	6,200	5,700	6,200	6,700	6,200	6,700

the heyrt of the boiler

SPECIFICATION [WDA-E Series]

Direct Fired Absorption Chiller \& Heater

COP 1.36(LHV) Middle-efficiency model

Model	Unit	WDAE 005	$\begin{gathered} \text { WDAE } \\ 006 \end{gathered}$	$\begin{aligned} & \text { WDAE } \\ & 007 \end{aligned}$	$\begin{aligned} & \text { WDAE } \\ & 008 \end{aligned}$	$\begin{gathered} \text { WDAE } \\ 010 \end{gathered}$	$\begin{gathered} \text { WDAE } \\ 012 \end{gathered}$	$\begin{aligned} & \text { WDAE } \\ & 015 \end{aligned}$	$\begin{gathered} \text { WDAE } \\ 018 \end{gathered}$	$\begin{gathered} \text { WDAE } \\ 021 \end{gathered}$	$\begin{aligned} & \text { WDAE } \\ & 024 \end{aligned}$	$\begin{aligned} & \text { WDAE } \\ & 028 \end{aligned}$
Cooling capacity	usRT	50	60	70	80	100	120	150	180	210	240	280
	kW	176	211	246	281	352	422	527	633	738	844	984
Heating Capacity	Mcal/h	133	159	186	212	265	318	398	477	557	636	742
	kW	155	185	216	247	308	370	463	555	648	740	863

	Temp. (inlet/outlet)	${ }^{\circ} \mathrm{C}$	$12 / 7$ (Heating $55.6 / 60^{\circ} \mathrm{C}$)										
\&	Flow rate	ton/h	30.2	36.3	42.3	48.4	60.5	72.6	90.7	108.9	127.0	145.2	169.3
Hot	P. Drop	mAq	7.6	7.7	5.8	5.4	5.9	6.0	8.0	8.1	7.5	7.4	5.3
	Connection	mm	80				100				125		150

Cooling Water	Temp. (inlet/outlet)		${ }^{\circ} \mathrm{C}$ m’/h	$32 / 37$										
	Flow rate			50	60	70	80	100	120	150	180	210	240	280
		P. Drop	mAq	3.5	3.7	8.2	7.7	3.3	3.5	9.6	10.1	5.8	4.7	8.7
	Connection		mm	100				125				150		200
Fuel	Gas	Cooling	$\mathrm{Nm}^{3} / \mathrm{h}$	12.1	14.5	17.0	19.4	24.2	29.1	36.3	43.6	50.9	58.2	67.8
		Heating	Nm / h	15.2	18.2	21.2	24.2	30.3	36.3	45.5	54.5	63.6	72.6	84.7
		Connection	mm	40 ($4,000 \mathrm{mmAq}$)										
Fuel	Oil	Cooling	kg/h	16.4	19.7	23.0	26.3	32.9	39.4	49.3	59.2	69.0	78.9	92.0
		Heating	kg/h	19.5	23.4	27.3	31.2	39.0	46.8	58.6	70.3	82.0	93.7	109.3
		Connection	mm	10				15			20			
	Power Source			$3 ¢ 400 \mathrm{~V} 50 \mathrm{~Hz}$										
	Abs. Pump No. 1		kW(A)	1.2(4.0)				2.0 (6.0)				2.4(7.0)		3.2(8.5
	Abs. Pump No. 2		kW(A)	0.3(1.4)				0.4(1.5)				1.2(4.0)		
	Ref. Pump		kW(A)	0.2(1.2)				0.3(1.3)				0.4(1.4)		

Remark 1) 1 usRT $=3,024 \mathrm{kcal} / \mathrm{h}$
2) Working Pressure of each water side is based on 1.0 MPa [151psig]
3) Nutural Gas LHV(Lower Heating Value) : $9,500 \mathrm{kcal} / \mathrm{Nm}^{3}$
4) Fouling factor $0.0001 \mathrm{~m}^{2} \cdot h \cdot{ }^{\circ} \mathrm{C} / \mathrm{kcal}$ for Absorber and Condenser, $0.0001 \mathrm{~m} 2 \cdot h^{\circ} \mathrm{C} / \mathrm{kcal}$ for Evaporator.
5) Catalogue specifications are subject to change without prior notice.

ENERKON
THE HE\&RT OFTHE BOILER

Model			Unit	$\begin{gathered} \text { WDAE } \\ 032 \end{gathered}$	WDAE 036	WDAE 040	$\begin{gathered} \text { WDAE } \\ 045 \end{gathered}$	WDAE 050	WDAE 056	WDAE 063	$\begin{gathered} \text { WDAE } \\ 070 \end{gathered}$	WDAE 080	WDAE 090	$\begin{gathered} \text { WDAE } \\ 100 \end{gathered}$
Cooling capacity			usRT	320	360	400	450	500	560	630	700	800	900	1000
			kW	1,125	1,266	1,406	1,582	1,758	1,969	2,215	2,461	2,813	3,165	3,516
Heating Capacity			Mcal/h	849	955	1,061	1,193	1,326	1,485	1,671	1,856	2,121	2,386	2,651
			kW	987	1,110	1,234	1,387	1,542	1,727	1,943	2,158	2,466	2,774	3,082
Chilled Hot Water	Temp.	(inlet/outlet)	${ }^{\circ} \mathrm{C}$	$12 / 7$ (Heating 55.6/60 ${ }^{\circ} \mathrm{C}$)										
		low rate	ton/h	193.5	217.7	241.9	272.2	302.4	338.7	381.0	423.4	483.8	544.3	604.8
		P. Drop	$m A q$	5.2	5.7	5.9	5.1	5.3	4.2	5.7	7.6	5.5	7.4	9.7
		onnection	mm	150			200					250		
Cooling Water	Temp.	(inlet/outlet)	${ }^{\circ} \mathrm{C}$	$32 / 37$										
		low rate	$\mathrm{m}^{3} / \mathrm{h}$	320	360	400	450	500	560	630	700	800	900	1000
		P. Drop	$m A q$	8.8	8.9	8.8	8.6	8.7	6.4	8.8	11.7	9.1	12.3	16.2
	Connection		mm	200			250		300			350		
Fuel	Gas	Cooling	$\mathrm{Nm}^{3} / \mathrm{h}$	77.5	87.2	96.9	109.0	121.2	135.7	152.7	169.6	232.6	261.7	290.8
		Heating	$\mathrm{Nm}^{3} / \mathrm{h}$	97.0	109.1	121.2	136.2	151.4	169.6	190.8	211.9	232.1	261.1	290.1
		Connection	mm	50 (4,000mmAq)										
Fuel	Oil	Cooling	kg/h	105.2	118.3	131.5	147.9	164.3	184.1	207.1	230.1	263.0	295.8	328.7
		Heating	kg/h	124.9	140.5	156.1	175.7	195.2	218.6	245.9	273.3	262.3	295.1	327.9
		Connection	mm	20								25		
Electric	Power Source			$3 \varphi 400 \mathrm{~V} 50 \mathrm{~Hz}$										
	Abs. Pump No. 1		kW(A)	3.2(8.5)	3.4(9.5)				5.5(14.3)			6.6(17)		
	Abs. Pump No. 2		kW(A)	1.2 (4.0)	1.5 (4.8)				2.0 (6.0)			2.2(6.5)		
	Ref. Pump		kW(A)	0.4(1.4)								1.5(4.0)		
	Purge Pump		kW(A)	0.4 (1.3)										
	Burner Blower		kW(A)	2.2 (5.0)		3.0 (6.5)			5.5 (13.0)			7.5 (15.8)		
	Control Panel		kW(A)	0.2 (0.5)										
	Total Amp.		A	20.7	22.5	24.0			36.5			45.1		
Size		ngth(L)	mm	4,770	4,880		4,970		5,100	5,600	6,110	5,750	6,250	6,800
		idth(W)	mm	2,200	2,370		2,640		3,250		3,330	3,400		
	Height(H)		mm	2,454	2,600		2,800		3,400			3,600		
Weight	Rigging		Ton	8.7	10.8	11.0	13.2	13.4	18.1	19.6	21.0	27.9	30.2	32.6
	Operation		Ton	9.8	12.3	12.7	15.2	15.5	20.7	22.3	24.0	31.8	34.3	37.0
Space for Tube Replacement			mm	4,500						5,200	5,700	5,200	5,700	6,200

the heyrt of the boiler

SPECIFICATION [WDA-H Series]

Direct Fired Absorption Chiller \& Heater

COP 1.51(LHV) High-efficiency model

MODEL			Units	WDAH 004	$\begin{aligned} & \text { WDAH } \\ & 005 \end{aligned}$	WDAH 006	WDAH 007	$\begin{gathered} \text { WDAH } \\ 008 \end{gathered}$	$\begin{gathered} \text { WDAH } \\ 010 \end{gathered}$	$\begin{gathered} \text { WDAH } \\ 012 \end{gathered}$	$\begin{gathered} \text { WDAH } \\ 015 \end{gathered}$	WDAH 018	$\begin{gathered} \text { WDAH } \\ 021 \end{gathered}$	WDAH 024
Cooling capacity			usRT	40	50	60	70	80	100	120	150	180	210	240
			kW	141	176	211	246	281	352	422	527	633	738	844
Heating Capacity			Mcal/h	106	133	159	186	212	265	318	398	477	557	636
			kW	123	155	185	216	247	308	370	463	555	648	740
Chilled Hot Water	Temp.	(inlet/outlet)	${ }^{\circ} \mathrm{C}$	$12 / 7$ (Heating 55.6 / 60)										
		w rate	$\mathrm{m}^{3} / \mathrm{h}$	24.2	30.2	36.3	42.3	48.4	60.5	72.6	90.7	108.9	127.0	145.2
		P.Drop	mAq	4.8	5.5	4.1	4.3	4.0	4.3	5.4	5.8	5.7	5.8	4.0
		nection	mm	80				100				125		150
Cooling Water	Temp.	(inlet/outlet)	${ }^{\circ} \mathrm{C}$	$32 / 37$										
		w rate	$\mathrm{m}^{3} / \mathrm{h}$	40	50	60	70	80	100	120	150	180	210	240
		. Drop	mAq	5.4	6.0	5.9	6.0	4.3	4.8	6.4	7.3	7.3	7.8	6.6
	Connection		mm	100				125				150		200
Fuel	Gas	Cooling	$\mathrm{Nm}^{3} / \mathrm{h}$	8.9	11.2	13.4	15.7	17.9	22.4	26.8	33.6	40.3	47.0	53.7
		Heating	$\mathrm{Nm}^{3} / \mathrm{h}$	11.6	14.5	17.4	20.4	23.3	29.1	34.9	43.6	52.3	61.1	69.8
		Connection	mm	40 ($4,000 \mathrm{mmAq}$)										
Electric	Power Source		-	$3 ¢ 400 \mathrm{~V} 50 \mathrm{~Hz}$										
	Abs. P	Pump No. 1	kW(A)	1.2 (4.0)				2.0 (6.0)				2.4 (7.5)		3.0 (11.0)
	Abs. P	Pump No. 2	kW(A)	0.3 (1.6)				0.4 (1.6)				1.2 (4.5)		
		f.Pump	kW(A)	0.2 (1.1)				0.3 (1.5)				0.4 (1.5)		
	Pur	ge Pump	kW(A)	0.4 (1.4)										
	Burn	er Blower	kW(A)	0.37 (1.0)		0.72 (2.1)					1.5 (4.0)			2.2 (5.0)
	Cont	trol Panel	kW(A)	0.2 (0.5)										
		al Amp.	kW(A)	2.67 (9.6)		3.055 (10.7)		4.05 (13.1)			4.8 (15.0)	6.1 (19.4)		7.4 (23.9)
Size		ngth(L)	mm	2,630		2,700		2,800		3,660		3,700		4,770
		dth(W)	mm	1,840		1,840		1,970			2,075	2,100		2,200
		ight(H)	mm	1,978				2,150				2,500		2,510
Weight		igging	Ton	2.8	3.0	3.3	3.7	4.0	4.2	5.1	5.6	6.4	7.6	8.1
		eration	Ton	3.2	3.4	3.6	4.0	4.8	5.0	6.1	6.7	7.9	8.2	9.1
Space for Tube Replacement			mm	2,000		2,400				3,400				4,500

Remark 1) 1usRT $=3,024 \mathrm{kcal} / \mathrm{h}$
2) Working Pressure of each water side is based on 1.0 MPa [151 psig]
3) Nutural Gas LHV(Lower Heating Value) : $9,500 \mathrm{kcal} / \mathrm{Nm}^{3}$, Diesel Oil LHV(Lower Heating Value) : $9,200 \mathrm{kcal} / \mathrm{kg}$
4) Fouling factor $0.0001 \mathrm{~m}^{2} \cdot \mathrm{~h} \cdot{ }^{\circ} \mathrm{C} / \mathrm{kcal}$ for Absorber and Condenser, $0.0001 \mathrm{~m}^{2} \cdot \mathrm{~h} \cdot{ }^{\circ} \mathrm{C} / \mathrm{kcal}$ for Evaporator.
5) Catalogue specifications are subject to change without prior notice.
the heydrt of the boiler
12

MODEL			Units	$\begin{aligned} & \text { WDAH } \\ & 028 \end{aligned}$	WDAH 032	$\begin{aligned} & \text { WDAH } \\ & 036 \end{aligned}$	$\begin{aligned} & \text { WDAH } \\ & 040 \end{aligned}$	$\begin{gathered} \text { WDAH } \\ 045 \end{gathered}$	$\begin{gathered} \text { WDAH } \\ 050 \end{gathered}$	$\begin{gathered} \text { WDAH } \\ 056 \end{gathered}$	$\begin{gathered} \text { WDAH } \\ 063 \end{gathered}$	WDAH 070	$\begin{gathered} \text { WDAH } \\ 080 \end{gathered}$	$\begin{aligned} & \text { WDAH } \\ & 090 \end{aligned}$
Cooling capacity			usRT	280	320	360	400	450	500	560	630	700	800	900
			kW	984	1,125	1,266	1,406	1,582	1,758	1,969	2,215	2,461	2,813	3,165
Heating Capacity			Mcal/h	742	849	955	1,061	1,193	1,326	1,485	1,671	1,856	2,121	2,386
			kW	863	987	1,110	1,234	1,387	1,542	1,727	1,943	2,158	2,466	2,774
Chilled Hot Water	Temp.	nlet/outlet)	${ }^{\circ} \mathrm{C}$	$12 / 7$ (Heating $55.6 / 60^{\circ} \mathrm{C}$)										
		w rate	$\mathrm{m}^{3} / \mathrm{h}$	169.3	193.5	217.7	241.9	272.2	302.4	338.7	381.0	483.8	544.3	604.8
		P.Drop	mAq	4.1	4.6	4.9	3.8	4.2	3.4	4.6	6.3	4.3	6.0	8.1
		nection	mm	150			200					250		
Cooling Water	Temp.	(inlet/outlet)	${ }^{\circ} \mathrm{C}$	$32 / 37$										
		w rate	$\mathrm{m}^{3} / \mathrm{h}$	280	320	360	400	450	500	560	630	700	800	900
		. Drop	mAq	6.9	7.3	7.3	6.8	7.0	5.2	7.2	9.7	7.2	10.0	13.4
		nection	mm	200			250		300			350		
Fuel	Gas	Cooling	$\mathrm{Nm}^{3} / \mathrm{h}$	62.6	71.6	80.5	89.5	100.7	111.8	125.3	140.9	156.6	178.9	201.3
		Heating	$\mathrm{Nm}^{3} / \mathrm{h}$	81.4	93.0	104.7	116.3	130.8	145.4	162.8	183.2	232.6	261.7	290.8
		Connection	mm	40 (4,000mmAq)						50 (4,000 mmAq)				
Electric	Power Source			$3 ¢ 400 \mathrm{~V} 50 \mathrm{~Hz}$										
	Abs. Pump No. 1		kW(A)	3.0 (11.0)	3.4 (10.2)				5.5 (14.5)			6.6 (16.2)		
	Abs. Pump No. 2		kw(A)	1.2(4.5)	1.5 (5.0)				2.0 (6.0)			2.2 (7.0)		
	Ref.Pump		kW(A)	0.4 (1.5)								1.5 (4.0)		
	Purge Pump		kW(A)	0.4 (1.4)										
	Burner Blower		kW(A)	2.2 (5.0)		3.0 (6.5)			5.5 (13.0)			7.5 (15.8)		
	Control Panel		kW(A)	0.2 (0.5)										
	Total Amp.		kW(A)	7.4(23.9)	$8.1(23.6)$	8.9(25.1)			14(36.9)			18.4(44.9)		
Size		ngth(L)	mm	4,770	4,870		4,900		5,100	5,600	6,150	5,750	6,250	6,800
		dth(W)	mm	2,200	2,300	2,430	2,650		3,150			3,400		
		ight(H)	mm	2,510	2,640		2,900		3,394			3,720		
Weight		igging	Ton	8.7	10.8	11.0	13.2	13.4	18.1	19.6	21.0	27.9	30.2	32.6
		eration	Ton	9.8	12.3	12.7	15.2	15.5	20.7	22.3	24.0	31.8	34.3	37.0
Space for Tube Replacement			mm	4,500						5,200	5,700	5,200	5,700	6,200

the heydrt of the boiler
13

Double Lift Hot Water Absorption Chiller

75RT ~ 1500RT 27 Models Hot Water Temp. : $95^{\circ} \mathrm{C}->55^{\circ} \mathrm{C}\left(\Delta \mathrm{T} 40^{\circ} \mathrm{C}\right)$

WDLE / Stable, Convenient, Efficient and Reliable

Non-carbon eco-friendly chiller

- Use of regional heating hot water (Energy use efficiency 84%. The ratio of incineration heat of the combined waste heat-74\%)
- Use of natural refrigerant water instead of Freon refrigerant destroying ozone layer
- No CO2 and Nox which cause the global warming

Zero explosive danger by vacuum operation

- Internal pressure vacuum
- No danger of gas explosion by use of hot water
- Safety from the danger of high-pressure damage

The excellent partial load part-load value

- Auxiliary cycle auto stop if the cooling load is below 80%
- Energy saving by 25% per chilled ton due to the increase in the efficiency by 25\%

Low noise \& Low vibration

- Noise level: Below 75 dB at 1 m distance

IPLV(Integrated Part-Load Value)

	Chilled water inlet ${ }^{\circ} \mathrm{C}$	Cooling capacity	COP	Part Load rate	IPLV
Single effect double lift type	31.0	100%	0.64	0.01	
	29.8	75%	0.82	0.42	0.83
	28.8	50%	0.85	0.45	
Single effect type	Chilled water inlet ${ }^{\circ} \mathrm{C}$	Cooling capacity	31.0	100%	COP
	29.9	75%	Part Load rate	IPLV	
	29.1	50%	0.72		
	28.1	25%	0.68	0.59	0.42
0.68					

1) Chilled water outlet temp keeps at $8^{\circ} \mathrm{C}$ and hot water inlet temp keeps at $95^{\circ} \mathrm{C}$
2) Assuming that the ambient humid temp is $27^{\circ} \mathrm{C}$ for the chilled water inlet temp,
it was designed to be lower depending on the hot water flow rate.
3) Part load rate is subject to the paragraph 5.3.2.2 of AR1560-2000.

Economic air-conditioniong

- Conventional Chiller: $\Delta 15^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{C}->80^{\circ} \mathrm{C}\right)$
- Insufficient heating hot water
- Sing-effect/ Double-lift Chiller: $\Delta 40^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{C}->55^{\circ} \mathrm{C}\right)$
- Saving 60% of the existing hot water use capacity

Wide range of the use
Micro processor control with only start-up signal for automatic operation

- Precise control of start-up, stop, capacity control, abnormal stop, etc.
- Easy to handle due to the touch screen
- Control of auxiliary cycle, self-diagnostic function \& other controls

Saving maintenance cost

- Leakage per month: 3cc or below. High vacuum condition
- Auto steam extraction. Non-condensing gas storage
- Optimal condition of the operation
- Operating with only minimum purging

Comparison of partial load COP

THE HEART OFTHE BOILER

As the refrigerant is evaporated from the evaporator, the chilled water flowing inside the heating tube of the evaporator is cooled down and the refrigerant evaporated is absorbed by the concentrated absorbing liquid from the 2nd generator. The concentrated absorbing liquid will become thick absorbing liquid and the heat generate will be absorbed by the chilled water. The thick absorbing liquid which absorbed the refrigerant steam from the absorbing unit will go to the 1st generator passing through the low-temp and high-temp heat exchangers. The hot water at $95^{\circ} \mathrm{C}$ in the 1 st generator will heat the thick absorbing liquid to generate the refrigerant steam and then it flows to the 2 nd generator after passing through the high-temp heat exchanger. The medium concentrated thick absorbing liquid comes from the 2 nd generator will be heated by the hot water coming from the 1st generator and it generates the refrigerant steam.
The refrigerant steam generated from the 2 nd generator will be absorbed by the absorbing liquid flowing outside the heat tube and the thick absorbing liquid which absorbed the refrigerant steam from the aux absorbing unit will flow to the aux generator after passing through aux heat exchanger, so that it is heated by the hot water flowing the heat tube of the aux generator to generate the refrigerant steam. Then, the concentrated absorbing liquid is returned back to the aux absorbing unit after passing through the aux heat exchanger.
The refrigerant steam generated from the 1 st generator and the aux generator will condense the refrigerant with the leakage of the chilled water inside the heat tube and then it absorbs the heat generated.
That is, the hot water flows the 1 st generator $\rightarrow 2$ nd generator \rightarrow aux generator while the chilled water flows absorbing unit \rightarrow aux absorbing unit \rightarrow condenser in order to form a chilled cycle. In addition, the low-temp hot water two stage absorbing chiller has main cycle and aux cycle and the details of the solution (liquid) flow are as below.

Main cycle solution flow

| Aux cycle solution flow

Aux diluted solution pump \Longrightarrow Aux heat exchanger \quad
$\begin{gathered}\text { Aux concentrated solution } \\ \text { pump }\end{gathered}$
$\begin{gathered}\text { Aux heat exchanger } \\ \end{gathered}$

ENERKON
(vi) World EnC

SPECIFICATION [WDLE Series]

Double Lift Hot Water Absorption Chiller

Model		$\begin{gathered} \text { WDLE } \\ 75 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 90 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 110 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 135 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 155 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 180 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 210 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 240 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 270 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 300 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 340 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 375 \end{gathered}$
Cooling capacity		75	90	110	135	155	180	210	240	270	300	340	375
		264	317	387	475	545	633	739	844	950	1055	1196	1319
Chilled Water	Temp.	$12 / 7$											
		45.4	54.4	66.5	81.6	93.7	108.9	127.0	145.2	163.3	181.4	205.6	226.8
		6.7	6.9	10.0	10.7	9.8	9.8	9.9	9.7	10.2	10.2	8.9	9.5
		80		100		125				150		200	
Cooling Water	Temp.	$32 / 37$											
		98.3	117.9	144.1	176.9	203.1	235.9	275.2	314.5	353.8	393.1	445.5	491.4
		6.7		10.6	10.9	11.6	12.1	11.9		11.1			11.2
		125		150				200		250			
Driving Hot Water		95/55											
	Flow rate	7.8	9.3	11.4	14.0	16.1	18.6	21.7	24.9	28.0	31.1	35.2	38.8
	P. Drop	2.8	2.8	4.2	4.4	4.5	4.5	5.4	5.3	4.1	4.3	5.2	5.3
		1.6	2.3	2.2	2.1	2.8	2.3	2.0	2.7	2.1	2.6	2.1	2.6
	Connection	65				80				100			
	Control Valve Size	40			50			65				80	
Electric	Power Source	$3 \Phi 400 \mathrm{~V} 50 \mathrm{~Hz}$											
	Abs. Pump	3.0 (11.9)		3.7 (13.3)		4.0 (14.1)		4.5 (15.3)		4.7 (15.3)		5.1 (17.1)	
	Ref. Pump	0.2 (1.2)		0.3 (1.4)				0.4 (1.4)					
	Purge Pump	0.4 (1.3)											
	Control Panel	0.2 (0.5)											
	Total Amp.	14.9		16.5		17.3		18.5		18.5		20.3	
Size		2,670		3,664		3,715		4,760		4,872		4,884	
		1,702				1,845				2,096		2,273	
		2,556				2,710				2,788		3,118	
Weight		4.5	4.7	5.8	6.1	7.3	7.7	9.0	9.4	11.5	12.0	13.8	14.3
		5.2	5.4	6.7	7.1	8.6	9.1	10.6	11.1	13.7	14.4	16.5	17.2
Space for Tube Replacement		2,400		3,400				4,600					

	Mod	Unit	$\begin{gathered} \text { WDLE } \\ 420 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 470 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 525 \end{gathered}$	$\begin{aligned} & \text { WDLE } \\ & 600 \end{aligned}$	$\begin{gathered} \text { WDLE } \\ 675 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 750 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 825 \end{gathered}$	WDLE 900	$\begin{aligned} & \text { WDLE } \\ & 975 \end{aligned}$	$\begin{gathered} \text { WDLE } \\ 1050 \end{gathered}$	$\begin{gathered} \text { WDLE } \\ 1125 \end{gathered}$	$\begin{aligned} & \text { WDLE } \\ & 1300 \end{aligned}$
Cooling capacity		usRT	420	470	525	600	675	750	825	900	975	1050	1125	1300
		kW	1477	1653	1846	2110	2374	2638	2901	3165	3429	3693	3957	4572
Chilled Water	Temp.	${ }^{\circ} \mathrm{C}$	12 / 7											
		$\mathrm{m}^{3} \mathrm{~h}$	254.0	284.3	317.5	362.9	408.2	453.6	499.0	544.3	589.7	635.0	680.4	786.2
		$\mathrm{mH}_{2} \mathrm{O}$	8.6	3.9	5.2	9.9	4.4	5.9	4.2	5.4	6.8	5.2	6.4	5.9
		A	200			250			300					
Cooling Water	Temp.	${ }^{\circ} \mathrm{C}$	$32 / 37$											
		$\mathrm{m}^{3} \mathrm{~h}$	550.3	615.9	687.9	786.2	884.5	982.7	1081.0	1179.3	1277.6	1375.8	1474.1	1703.4
		$\mathrm{mH}_{2} \mathrm{O}$	8.0	10.9	12.6	10.7	12.4	14.4	11.6	7.9	9.9	6.6	8.1	11.9
		mm	300			350			400			450		
Driving Hot Water		${ }^{\circ} \mathrm{C}$	95/55											
	Flow rate	ton/h	43.5	48.7	54.4	62.1	69.9	77.7	85.4	93.2	101.0	108.7	116.5	134.6
		$\mathrm{mH}_{2} \mathrm{O}$	3.7	3.8	2.9	4.3	5.8	3.1	2.8	3.5	4.3	3.7	4.3	5.5
		$\mathrm{mH}_{2} \mathrm{O}$	2.0	2.6	1.4	1.9	2.3	2.9	1.6	1.9	2.3	2.6	3.0	2.2
		A	100			125						150		
	Contro	A	80		100				125					150
Electric	Pow		$3 \Phi 400 \mathrm{~V} 50 \mathrm{~Hz}$											
		kW (A)	5.8 (18.8)			7.8 (22.5)	10(30.9)		10.6 (34.8)			14.8 (49.3)		
		kW (A)	0.4 (1.4)				1.5 (4.0)							
	Pur	kW (A)	0.4 (1.3)											
	Con	kW (A)	0.2 (0.5)											
		A	22			25.7	36.7		40.6			55.1		
Size		mm	4,994	5,536	6,034	5,650	6,180	6,705	6,505	7,005	7,505	7,050	7,700	8,700
		mm	2,446			2,770			3,565			3,980		
		mm	3,468			3,740			4,194			4,380		
Weight		ton	19.4	21.1	22.6	27.2	29.3	31.3	37.1	39.2	41.6	45.2	48.4	56.0
		ton	23.5	25.5	27.4	32.2	34.7	37.0	44.0	46.4	49.3	53.7	57.5	66.5
Space for Tube Replacement		mm	4,600	5,200	5,700	5,200	5,700	6,200	5,700	6,200	6,700	6,300	6,800	7,800

the heyrt of the boiler

Double Stage Hot Water Absorption Chiller

 30RT ~ 300RT 13 Models Hot Water Temp. : $95^{\circ} \mathrm{C}->75^{\circ} \mathrm{C}\left(\Delta \mathrm{T} 20^{\circ} \mathrm{C}\right)$Hot Water temp. $95^{\circ} \mathrm{C} \rightarrow 75^{\circ} \mathrm{C}$
| Cycle Diagram
| Economic Air-Condition

THE HENRT OFTHE BOILER

MODE		$\begin{gathered} \text { WHL } \\ 30 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 40 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 50 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 75 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 90 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 110 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 135 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 155 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 180 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 210 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 240 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 270 \end{gathered}$	$\begin{gathered} \text { WHL } \\ 300 \end{gathered}$
Cooling Capacity		105	141	176	264	316	387	474	545	633	738	844	949	1,054
		30	40	50	75	90	110	135	155	180	210	240	270	300
Chilled Water	Temp.	12 / 7												
		18.1	24.2	30.2	45.4	54.4	66.5	81.6	93.7	109.0	127.0	145.0	163.0	181.4
		7.3	8.3	7.0	6.4	6.8	9.6	10.5	9.5	9.6	9.7	9.5	10.2	10.5
	Con	65		80			100		125				150	
Cooling Water	Temp.	$32 / 37$												
		37.1	49.5	61.9	92.8	111.3	136.1	167.0	240.2	222.7	259.8	296.9	334.0	371.1
		8.9	9.8	12.0	8.4	8.8	8.0	8.7	12.0	8.5	7.5	7.6	7.5	7.3
	Con	80		100			125		150		200		250	
Hot Water		$95 / 75$												
	Flow Rate	4.5	6.0	7.6	11.3	13.6	16.6	20.4	23.4	27.2	31.8	36.3	40.8	45.4
	Pressure	1.6	2.0	3.4	3.1	3.2	4.3	4.8	4.3	4.3	5.1	4.9	4.9	4.7
	Drop	2.2	1.5	1.0	2.2	2.1	3.1	1.9	2.5	3.3	1.8	2.3	3.0	1.4
	Connection Size	65							80				100	
	Contr	25	40			50		65			80			100
Electic		$3 \Phi 400 \mathrm{~V} 50 \mathrm{~Hz}$												
		1.6 (6.6)			1.8 (7.2)		2.1 (8.2)		2.8 (9.2)		3.2 (10.2)			
		0.2 (1.1)					0.3 (1.5)				0.4 (1.5)			
		0.4 (1.4)												
		0.2 (0.5)												
		2.4 (9.6)			2.6 (10.2)		3 (11.6)		3.7 (12.6)		4.2 (13.6)			
Size		2,052		2,552	2,605		3,680		3,710		4,740		4,780	
		1,351			1,370				1,520				1,810	
		2,133			2,370				2,430				2,670	
Weight		2.2	2.3	2.8	4.0	4.2	5.1	5.3	6.1	6.4	7.5	7.8	9.7	10.1
		2.6	2.7	3.3	4.7	4.9	5.7	5.9	6.8	7.1	8.3	8.7	10.8	11.2

Remark 1) $1 \mathrm{usRT}=3,024 \mathrm{kcal} / \mathrm{h}$
2) Available max. working pressure of chilled water/cooling water/hot water : 1.0 MPa
3) Fouling factor $0.0001 \mathrm{~m}^{2} \mathrm{~h}^{\circ} \mathrm{C} / \mathrm{kcal}$ for Absorber and Condenser, $0.0001 \mathrm{~m}^{2} \mathrm{~h}^{\circ} \mathrm{C} / \mathrm{kcal}$ for Evaporator and Generator.
4) Catalogue specifications are subject to change without prior notice.

THE HEART OFTHEBOILER
19

Hot Water Absorption Chiller

WSL / Hot Water Absorption

Hot water Absorption chiller operation flow chart

ENERKON
THE HEART OFTHEBOILER

1. Compact and Energy saving Design

With using high efficiency heat tube, smaller and lighter design to conventional things. Installation space also gets decreased.

2. Easy operation and convenience

 Full automatic system with up-to -date control technology such as operation, setting, monitoring, and control flow chart.
3. Safe and efficient chiller

Being operated in vacuum condition, it keeps internal pressure in vacuum status even in stop mode. With 2 pumps for solution and refrigerant, it is totally quiet. No noise and No vibration.

4. Maintenance cost reduction and only one purging during a season

 Optimized operation condition and trouble-free system under strict manufacturing standard: $1 \times 10-6 \mathrm{~atm} . c c / \mathrm{sec}$ leakage for a month.
5. High performance Automatic Purge system

An automatic purge unit to collect into a purge tank remaining Non-condensable gases in system and purge tank for storing Non-condensable gases make long time operation without manual purging.

SPECIFICATION [WSL Series]
 Hot Water Absorption Chiller

Hot water inlet temp. $95^{\circ} \mathrm{C}$

Model		Unit	WSL75	WSL90	WSL110	WSL135	WSL155	WSL180	WSL210	WSL240	WSL270	WSL300
Chilled water temp. at in-outlet		${ }^{\circ} \mathrm{C}$	$12 / 7$									
Cooling capacity		usRT	70	85	103	122	141	169	198	226	254	282
	Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	42.3	51.4	62.3	73.8	85.3	102.2	119.8	136.7	153.6	170.6
	Pressure drop	mAq	7.8	8.5	7.5	7.4	7.0	7.9	7.5	7.9	7.8	8.0
	Pipe size	mm	80		100		125				150	
	Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	92.5	112.3	136.1	161.1	186.2	223.2	261.5	298.5	335.5	372.5
	Pressure drop	mAq	10.1	9.8	4.7	4.2	4.6	4.8	9.7	9.5	9.3	9.0
	Pipe size	mm	125		150				200			
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{o}} \\ & \stackrel{\tilde{\omega}}{3} \\ & \stackrel{\rightharpoonup}{1} \end{aligned}$	Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	19.6	23.8	28.8	34.2	39.5	47.3	55.4	63.3	71.1	79.0
	Pressure drop	mmAa	0.9	0.9	0.4	0.5	0.5	0.5	1.1	1.1	1.0	1.0
	Pipe size	mm	65		80				100			
	Valve size	mm	50	65		80			100			
$\begin{aligned} & \text { 를 } \\ & \text { 르 } \\ & \frac{\mathbb{U}}{\Psi} \end{aligned}$	Power	-	$3 ¢ 400 \mathrm{~V} 50 \mathrm{~Hz}$									
	Solution Pump	kW(A)	1.5(4.7A)				2.0(6.1A)		2.4 (7.3A)			
	Refrigerant Pump	kN(A)	0.3(1.7A)						0.4(1.7A)			
	Purge Pump	-	$0.4(1.5 \mathrm{~A})$									
	Total Ampere	kN(A)	2.2 (7.9)				2.7 (9.3)		3.2 (10.5)			
	Length	mm	2,640		3,680		3,686		4,744		4,776	
	Width	mm	1,244		1,244		1,369		1,365		1,495	
	Height	mm	2,255		2,255		2,389		2,389		2,575	
$\begin{aligned} & \frac{ᄃ}{0} \\ & \stackrel{0}{0} \\ & 3 \end{aligned}$	Equipment weight	Ton	3.6	3.7	4.6	4.8	5.8	6.0	7.0	7.3	9.0	9.4
	Operation weight	Ton	4.1	4.3	5.3	5.6	6.7	7.1	8.2	8.7	10.6	11.1
	Conveyance	-	One body									

- Remark 1) Standard pressure:

Cooling and Chilled water:0.8Mpagf(8kgf/cm2G),
Hot water standard pressure:1.6Mpa(16kgf/cm2G)
2) Chilled water standard TEMP:Inlet: $12^{\circ} \mathrm{C}$, Outlet: $7^{\circ} \mathrm{C}$ Cooling water standard TEMP: Inlet: $32^{\circ} \mathrm{C}$, Outlet : $37^{\circ} \mathrm{C}$
3) Hot water standard TEMP: Inlet: $95^{\circ} \mathrm{C}$, Outlet : $80^{\circ} \mathrm{C}$.
4) Power standard : $400 \mathrm{~V}, 3$ Phase, $50 \mathrm{~Hz},(220,440,460 \mathrm{~V}$ also available)
5) The specification could be changed without any notice.

ENERKON
(ii) World EnC

SPECIFICATION [WSL Series]

Hot Water Absorption Chiller

Hot water inlet temp. $95^{\circ} \mathrm{C}$

Model		Unit	WSL340	WSL375	WSL420	WSL470	WSL525	WSL600	WSL675	WSL750	WSL825
Chilled water temp. at in-outlet		${ }^{\circ} \mathrm{C}$	12 / 7								
Cooling capacity		usRT	320	360	399	446	494	569	641	712	783
	Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	193.5	217.7	241.3	269.7	298.8	344.4	387.4	430.5	473.5
	Pressure drop	mAq	7.1	7.6	6.0	8.1	3.5	2.5	3.5	4.6	3.5
	Pipe size	mm	200					250			300
$\begin{aligned} & \stackrel{\vdots}{\mathbf{y}} \\ & \stackrel{\pi}{3} \\ & 0 \\ & \stackrel{=}{\circ} \\ & 0 \end{aligned}$	Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	422.7	475.5	527.0	589.1	652.5	752.1	846.1	940.2	1034.21
	Pressure drop	mAq	9.4	9.8	6.8	9.2	12.1	8.9	12.0	15.9	16.2
	Pipe size	mm	250		300			350			400
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{\omega}} \\ & \stackrel{\pi}{3} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	89.6	100.8	111.7	124.98	138.3	159.4	179.4	199.3	219.2
	Pressure drop	mAq	1.0	1.0	1.0	1.4	1.9	1.2	1.5	2.1	2.3
	Pipe size	mm	125					150			200
	Valve size	mm	125					150			200
	Power	-	$3 ¢ 400 \mathrm{~V} 50 \mathrm{~Hz}$								
	Solution Pump	KW(A)	2.4(7.3A)		3.0(10A)						4.5(16.2A)
	Refrigerant Pump	KW(A)	0.4(1.7A)								1.5(4.0A)
	Purge Pump	-	0.4(1.5A)								
	Total Ampere	kN(A)	3.2 (10.5)		3.8 (13.2)						5.3 (21.7)
	Length	mm	4,780		4,870	5,410	5,910	5,618	6,116	6,641	7,141
$\stackrel{0}{0}$	Width	mm	1,595		1,955			2,200			
	Height	mm	2,850		3,150			3,840			
$\begin{aligned} & \frac{-}{0} \\ & \frac{0}{0} \\ & 3 \end{aligned}$	Equipment weight	Ton	10.7	11.7	14.9	16.2	17.4	20.8	22.5	24.0	28.3
	Operation weight	Ton	12.7	13.2	18.0	19.6	21.0	25.0	27.0	28.8	34.0
	Conveyance	-	One Body								

- Option In different heat source and operation, the conditions can be selected as an option.

1) When the water pressure different from the standard.
2) When heat tube material is not copper nor with different tickness.
3) When Hot/cooling/chilled water temp. are different from standard.

ENERKON
THE HEART OF THE BOILER

Steam Fired Absorption Chiller

100RT ~ 1500RT 23 Models

Eco friendly and energy-saving design
WSA uses steam as the energy resource, LiBr as absorbent and water as refrigerant. With use of eco friendly materials, WSA does not raise the carbon dioxide which causes the global warming The cost for electricity and operation can be saved in the area where steam is enough to use.

Reliable and efficient operation

WSA is designed to enhance the reliability and durability. Inverter control of absorbent depending on cooling load makes efficient operation.

Intelligent operation system

Micro process control realizes precise control and efficient operation of the unit. And the user can operate the unit easily on the touch screen.

Steam Consumption: $3.5 \mathrm{~kg} / \mathrm{h} \cdot \mathrm{RT} \sim 4.4 \mathrm{~kg} / \mathrm{h} \cdot \mathrm{RT}$

| Cycle Diagram

the heyrt ofthe boiler

23

SPECIFICATION [WSA Series]

Steam Fired Absorption Chiller

Model		Unit	$\begin{array}{\|c} \text { WSA } \\ 010 \end{array}$	$\begin{aligned} & \text { WSA } \\ & 012 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 015 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 018 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 021 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 024 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 028 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 032 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 036 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 040 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 045 \end{aligned}$
Cooling capacity		usRT	100	120	150	180	210	240	280	320	360	400	450
		kW	352	422	528	633	739	844	985	1,125	1,266	1,407	1,583
Chilled Water	Temp. (inlet/outlet)	${ }^{\circ} \mathrm{C}$	12/7										
	Flow rate	ton/h	60.5	72.6	90.7	108.9	127.0	145.2	169.3	193.5	217.7	241.9	272.2
	P. Drop	mAq	6.5	6.4	8.0	8.3	7.5	7.9	5.1	5.5	5.8	6.1	5.2
	Connection	mm	100				125		150				
Cooling Water	Temp. (inlet/outlet)	${ }^{\circ} \mathrm{C}$	32/37										
	Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	100	120	150	180	210	240	280	320	360	400	450
	P. Drop	mAq	3.9	4.4	6.5	7.7	5.6	6.2	10.9	12.1	8.7	9.4	10.3
	Connection	mm	125				150		200				
Steam	Flow rate	kg/h	440	530	660	790	920	1060	1230	1410	1580	1760	1980
	Steam Inlet onnect.	A	50				65				80		
	Drain Outlet onnect.	A	25								40		
	Control Valve Size	A	25	40					50				
Electric	Power Source		$3 ¢ 400 \mathrm{~V} 50 \mathrm{~Hz}$										
	Abs. Pump \#1	kW(A)	2.0 (6.0)				2.4 (7.5)		3.0 (11.0)		3.4 (10.2)		3.4
	Abs. Pump \#2	kW(A)	0.4(1.6)				1.2 (4.5)				1.5 (5.0)		1.5
	Ref. Pump	kW(A)	0.3 (1.5)				0.4(1.5)						
	Purge Pump	kW(A)	0.4 (1.4)										
	Control Panel	kW(A)	0.2 (0.5)										
	Total Ampere	kW(A)	3.3 (11.0)				4.6 (15.4)		5.2 (18.9)		5.9 (18.6)		
Size	Length (L)	mm	2,632	2,832	3,644		3,670		4,720		4,860		4,910
	Width (W)	mm	1,775				1,880				2,110		2,250
	Height (H)	mm	2,030				2,300				2,550		2,780
Widght	Rigging	Ton	3.9	4.1	5.1	5.2	6.2	6.4	7.7	8.0	9.8	10.1	11.8
	Operation	Ton	4.3	4.5	5.6	5.8	6.9	7.2	8.6	9.0	11.0	11.4	13.5
Space f	r Tube Replacement	mm	2,400		3,400				4,500				

Remark 1) 1 usRT $=3,024 \mathrm{kcal} / \mathrm{h}$
2) Standard Steam Pressure is 0.8 M
3) Working Pressure of chilled water and cooling water side is based on 1.0 MPaPa
4) Fouling factor $0.0001 \mathrm{~m} 2 \cdot h \cdot{ }^{\circ} \mathrm{C} / \mathrm{kcal}$ for Absorber and Condenser, $0.0001 \mathrm{~m} 2 \cdot \mathrm{~h} \cdot{ }^{\circ} \mathrm{C} / \mathrm{kcal}$ for Evaporator.
5) Catalogue specifications are subject to change without prior notice.

THE HEART OFTHE BOILER
24

Model		Unit	$\begin{aligned} & \text { WSA } \\ & 050 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 056 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 063 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 070 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 080 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 090 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 100 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 110 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 120 \end{aligned}$	$\begin{gathered} \text { WSA } \\ 130 \end{gathered}$	$\begin{aligned} & \text { WSA } \\ & 140 \end{aligned}$	$\begin{aligned} & \text { WSA } \\ & 150 \end{aligned}$
Cooling capacity		usRT	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500
		kW	1,758	1,969	2,216	2,462	2,814	3,165	3,517	3,869	4,220	4,572	4,924	5,275
Chilled Water	Temp. (inlet/outlet)	${ }^{\circ} \mathrm{C}$	12/7											
	Flow rate	ton/h	302.4	338.7	381.0	423.4	483.8	544.3	604.8	665.3	725.8	786.2	846.7	907.2
	P. Drop	mAq	5.5	4.6	6.2	8.1	4.7	6.4	8.4	6.2	7.9	9.8	8.0	9.8
	Connection	mm	200				250			300			350	
Cooling Water	Temp. (inlet/outlet)	${ }^{\circ} \mathrm{C}$	32/37											
	Flow rate	$\mathrm{m}^{3} / \mathrm{h}$	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500
	P. Drop	mAq	11.2	7.1	9.4	12.1	8.4	11.1	14.3	8.8	10.9	13.4	12.3	14.6
	Connection	mm	250	300			350			400				
Steam	Flow rate	kg/h	2200	2460	2770	3080	3520	3960	4400	4840	5280	5720	6160	6600
	Steam Inlet onnect.	A	80	100			125			150				
	Drain Outlet onnect.	A	40	50			65			80				
	Control Valve Size	A	65			80				100				
Electric	Power Source		$3 \varnothing 400 \mathrm{~V} 50 \mathrm{~Hz}$											
	Abs. Pump \#1	kW(A)	3.4(10.2)	5.5 (20.0)			6.6 (16.2)			7.5 (25.0)				
	Abs. Pump \#2	kW(A)	1.5 (5.0)	2.0 (6.0)			2.2 (7.0)			4.5 (16.0)				
	Ref. Pump	kW(A)	0.4 (1.5)				1.5 (4.0)							
	Purge Pump	kW(A)	04 (1.4)											
	Control Panel	kW(A)	0.2 (0.5)											
	Total Ampere	kW(A)	5.9 (18.6)	8.5 (29.4)			10.9 (29.1)			14.1 (46.9)				
Size	Length (L)	mm	4,910	5,040	5,580	6,080	5,720	6,220	6,740	6,150	6,670	7,170	6,830	7,330
	Width (W)	mm	2,250	2,480			2,825			3,000			3,250	
	Height (H)	mm	2,780	3,255			3,400			3,600			3,650	
Widght	Rigging	Ton	12.1	16.6	18.1	19.4	24.6	26.3	28.3	31.8	33.9	35.8	39.6	41.8
	Operation	Ton	13.9	19.2	20.8	22.3	28.7	30.7	32.8	36.4	38.8	40.9	45.3	47.7
Space for Tube Replacement		mm	4,500		5,200	5,700	5,200	5,700	6,200	5,700	6,200	6,700	6,200	6,700

THE HEART OF THE BOILER

Exhaust Gas
 Absorption Chiller \& Heater
 100RT ~ 1500RT 23 Models

1. Waste exhaust gas can be used for drive heat source.
2. Convertible use of cooling and heating
3. Energy saving product
4. Increase in the efficiency of total energy
5. No power overload in summer season
6. Environment-friendly to use water as refrigerant

WEG / Chilled water $12 \rightarrow 7^{\circ} \mathrm{C}$

Development of diverter valve

- Working at high temp $500^{\circ} \mathrm{C}$. Endurability
- Maximum flow for exhaust gas: 90kg/min

the heart of the boiler
(iv) World EnC

CYCLE DIAGRAM

Exhaust Gas Absorption Chiller \& Heater

Cooling Cycle Diagram

| Cooling Cycle

High Temp. Generator	Refrigerant Steam	Low Temp Generator	Condenser	Low Temp Generator	Absorber	Low Temp Heat Exchanger	High Temp Heat Exchanger		High Temp Generator		
	Solution	High Temp	Low Temp								

Heating Cycle Diagram

Heating Cycle
(iv) World EnC

SPECIFICATION [WEG Series]

Exhaust Gas Absorption Chiller \& Heater

Model			Unit	$\begin{aligned} & \text { WEG } \\ & 010 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 012 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 015 \end{aligned}$	$\begin{gathered} \text { WEG } \\ 018 \end{gathered}$	$\begin{aligned} & \text { WEG } \\ & 021 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 024 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 028 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 032 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 036 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 040 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 045 \end{aligned}$
Cooling capacity			usRT	100	120	150	180	210	240	280	320	360	400	450
			KW	351	422	527	633	738	844	984	1,125	1,265	1,406	1,582
Heating capacity			Mcal/h	283	340	425	510	595	680	793	906	1019	1133	1274
			KN	329	395	494	592	691	790	922	1053	1185	1317	1481
Chiiled Water	Temp. (in	nlet/outlet)	${ }^{\circ} \mathrm{C}$	12 / 7										
		rate	$\mathrm{m}^{3} / \mathrm{h}$	60.5	72.6	90.7	109	127	145	169	194	218	242	272
		Drop	mAq	4.8	5.1	6.6	7.0	6.4	6.3	4.6	4.5	5.0	5.1	4.4
	Con	ection	mm	100				125		150				
Cooling Water	Temp. (in	nlet/outlet)	${ }^{\circ} \mathrm{C}$	32/37										
		w rate	$\mathrm{m}^{3} / \mathrm{h}$	100	120	150	180	210	240	280	320	360	400	450
		Drop	mAq	11.1	11.3	11.5	11.8	11.8	12.1	11.2	10.7	11.1	10.8	10.7
	Con	ection	mm	125		150				200				250
ExhaustGas		mp.	$\mathrm{kg} / \mathrm{sec}$	0.88	1.05	1.32	1.58	1.84	2.11	2.46	2.81	3.16	3.51	3.95
	Temp.	Cooling	${ }^{\circ} \mathrm{C}$	450/165										
		Heating	${ }^{\circ} \mathrm{C}$	450/125										
		Drop	mmAq	77	82	79	92	97	113	129	131	123	131	133
	Outle	Conn	mm	400				500				600		
	Diver	er Valve	mm	400				500				600		
Electric	Powe	source	-	$3 ¢ 400 \mathrm{~V} 50 \mathrm{~Hz}$										
	Abs	Pump	kW(A)	2.0(5.7)				2.4(6.1)				3.4 (9.0)		
	Ref	Pump	kW(A)	0.3(1.5)				0.4(1.6)						
	Purg	Pump	kW(A)	0.4(1.4)										
	Contr	l Pump	KVA	0.2 (0.5)										
	Amp.	(400 Vac)	kW(A)	2.9(9.10)				3.4(9.6)				4.4(12.5)		
Size		th (L)	mm	2,597		3,680		3,686		4,744		4,776		4,954
		(W)	mm	1,662	1,740	1,857	1,935	2,150	2,189	2,267	2,375	2,270	2,309	2,491
	Hei	ht (H)	mm	1,979				2,303				2,470		2,744
Weight		ging	mm	5.0	5.3	6.4	6.8	7.9	8.5	9.8	10.3	12.8	13.2	15.7
		ration	Ton	5.4	5.8	7.0	7.4	8.6	9.3	10.7	11.3	14.0	14.6	17.2
Tube exchange space			Ton	2,400		3,400				4,500				

- Remark Working Pressure of each water side is based on 1.0Mpu (150psig.)
the heart of the boiler

Model			Unit	$\begin{aligned} & \text { WEG } \\ & 050 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 056 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 063 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 070 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 080 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 090 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 100 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 110 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 120 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 130 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 140 \end{aligned}$	$\begin{aligned} & \text { WEG } \\ & 150 \end{aligned}$
Cooling capacity			usRT	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500
			kN	1,757	1,968	2,214	2,460	2,812	3,163	3,515	3,866	4,218	4,569	4,921	5,272
Heating capacity			Mcal/h	1416	1586	1784	1982	2266	2549	2832	3115	3398	3682	3965	4248
			KN	1646	1843	2074	2304	2633	2962	3291	3621	3950	4279	4608	4937
Chiiled Water	Temp. (in	inlet/outlet)	${ }^{\circ} \mathrm{C}$	12 / 7											
		rate	$\mathrm{m}^{3} / \mathrm{h}$	302	339	381	423	484	544	605	665	726	786	847	907
		Drop	mAq	3.9	3.6	5.0	6.6	4.7	6.4	8.5	7.2	9.2	11.5	8.3	10.2
	Con	ection	mm	200				250			300			350	
Cooling Water	Temp. (in	(nlet/outlet)	${ }^{\circ} \mathrm{C}$	32/37											
	Flow rate		$\mathrm{m}^{3} / \mathrm{h}$	500	560	630	700	800	900	1000	1100	1200	1300	1400	1500
		Drop	mAq	10.8	7.7	10.6	14.0	8.7	11.8	15.6	3.0	3.8	4.8	4.0	4.9
	Con	ection	mm	250	300			350			400				
$\begin{gathered} \text { Exhaust } \\ \text { Gas } \end{gathered}$		mp.	$\mathrm{kg} / \mathrm{sec}$	4.39	4.92	5.53	6.15	7.03	7.91	8.78	9.66	10.54	11.42	12.30	13.18
	Temp.	Cooling	${ }^{\circ} \mathrm{C}$	450/165											
		Heating	${ }^{\circ} \mathrm{C}$	450/125											
		Drop	mmAq	134	143	133	146	155	153	176	213	221	212	206	184
	Outlet Conn		mm	600	750						1000				
	Diverter Valve		mm	600	750						1000				
Electric	Power source			$3 ¢ 400 \mathrm{~V} 50 \mathrm{~Hz}$											
	Abs. Pump		kN(A)	3.4(9.0)	5.5(14.3)						7.5 (21.9)				
	Ref. Pump		kN(A)	$0.4(1.6)$				1.5(3.8)							
	Purge Pump		kN(A)	0.4(1.4)							0.7 (2.2)				
	Control Pump		KVA	$0.2(0.5)$											
	Amp. (400 Vac)		kN(A)	4.4(12.5)	6.5 (17.8)			7.6 (20.0)			9.95 (28.4)				
Size	Length (L)		mm	4,954	4,998	5,540	6,038	5,460	5,958	6,483	6,293	6,818	7,318	6,974	7,475
	Width (W)		mm	2,569	2,934	3,069	3.459	3,330	3,480	3,530	4,348	4,448	4,598	4,932	5,182
	Height (H)		mm	2,744	3,057			3,390			3,678			3,700	
Weight	Rigging		mm	16.5	21.2	23.1	24.6	31.0	33.6	35.6	41.1	43.4	46.4	50.2	54.1
	Operation		Ton	18.1	23.7	25.8	27.5	34.8	37.6	39.9	46.2	48.8	52.1	56.5	60.8
Tube exchange space			Ton	$4,500$		5,200	5,700	5,200	5,700	6,200	5,700	6,200	6,700	6,200	6,700

ThE HEART OFTHE BOILER

Multi-Fuel Absorption Chiller \& Heater 100RT ~ 1000RT

This model is designed to use different energy resource for cooling and heating. Exhaust gas, steam and hot water can be used with gas or oil.

Heat resource: Natural Gas, Oil, Steam, Hot Water
| Cycle Diagram

THE HE, 隹T OFTHE BOILER

CYCLE DIAGRAM
 Multi-Fuel Absorption Chiller \& Heater

Gas \& Steam Fired (Dual Fuel)

\| Gas \& Water Fired (Dual Fuel)

THE HE ART OFTHE BOILER

Absorption Heat Pump developed to produce medium temperature energy by using high temperature energy resource such as steam, hot water and exhaust gas and low temperature waste heat energy.
This Absorption Heat Pump can be used to supply hot water for heating in a building or to supply hot water in the process of factory by using waste heat resource.

| Cycle Diagram(Heated Water)

Generator Vapor is generated from heat supplied by driven hot water and the generated vapor is moved into Condenser.

Condenser The vapor is condensed on the tubes and the heat is transferred to hot water inside the tubes.
Evaporator The evaporator takes evaporating heat from the waste hot water and the evaporated vapor moves into Absorber.

Absorber The evaporated vapor is absorbed into concentrated solution coming from a generator and the heat is transferred to process hot water.

ENERKON
the heyrt of the boiler

Absorption Heat Transformer
 ABSORPTION HEAT PUMP

Absorption Heat Transformer developed to produce high temperature energy by using medium temperature energy resource in the process of factory. This Absorption Heat Transformer can be used in the plants that have high temperature waste heat resource to recycle it.

| Cycle Diagram(Steam Gene.)

Generator Vapor is generated from heat supplied by driven hot water and the generated vapor is moved into Condenser.

Condenser The vapor is condensed on the tubes and the heat is transferred to hot water inside the tubes.
Evaporator The evaporator takes evaporating heat from the waste hot water and the evaporated vapor moves into Absorber.

Absorber The evaporated vapor is absorbed into concentrated solution coming from a generator and the heat is transferred to process hot water.

ENERKON
THE HEART OFTHEBOILER

Control System

Care of Service Convenience \& Customer Satisfaction

- Latest PLC with 10 inch touch screen, remote control and BAS compatible
- Increase chiller's efficiency with precise PID control
- Applicable for Modbus, Ethernet, BAC Net TCP/IP
- Chiller's status can be monitored through PLC Web connection (Option)

You can have the innovative technology through WORLD EnC only

\| PLC

Touch Screen \& Color Monitor

- Control Program is composed of single-effect and double-effect
- Single-effect standard Logic
: Base on Double-lift Hot Water Absorption Chiller
- Double-effect standard Logic
: Base on Direct-fired Absorption Chiller and Heater
- Touch program is constructed by each model

Customized System

- Temperature sensor : PT1000
-Analog Input : 12 Port
- Analog Output : 4 Port
- Digital Input : 12 Port
- Digital Output : 12 Port
- RS-485C, RS-TCP/IP, VNC

- Operation history will be saved for 168 hours once every 10 seconds
- Increase the saving period up to 6 months once every 5 seconds with 2GB SD momery card (Option)
- Alarm history will be stored continuously from the initial chiller operation (unless deleted)

Web Mornitoring

Able to Check

Operation Data Download Available

> Field Manager Field alerts, load monitoring \& control, energy consumption

1. Possible to check real-time and past data for temperature, alarm and operation of various job sites and remotely control various set values.
2. Field and building managers use the Web Monitoring system to check and control the data for 24 hours a day, 365 days a year on PC \& Mobile devices.
3. By using the Web Monitoring system, it is possible to monitor the alarm value in real-time of the chiller anywhere (work, home, even on the move), then detect abnormalities that occur during operation, and respond immediately.

THE HEART OFTHEBOILER

FIELD INSTALLED

World Enc

Korea

Government Complex in Sejong City Administrative Complex
Hot water / 600RT 8 units

Lotte Chemical Daesan Plant Hot water / 1,300RT 3 units, 975RT 1 unit

Pangyo Mtek Vision Office Hot water / 600RT 3 units, 340RT 10 units

Korea Zinc Onsan Refinery Steam / 500RT 2 units

Incheon International Airport Hot water / 975RT 8 units

Heungdeok IT Valley Hot water / 825RT 2 units, 270RT 2 units, 155RT

Lotte Mart Suwon Branch Direct Fired / 700RT 6 units

Inha University Hospital Direct Fired / 800RT 4 units

Gimpo Airport Sky Park Hot water / 700RT 13 units

Lotte Department Store Dongtan Hot water / 820RT 10 units, 280RT 2 units

Lotte Chemical Yeosu Plant Hot water / 525RT 2 units, Steam 1100RT

Dongtan Hallym University Hospital Hot water / 900RT 2 units

THE HEART OFTHE BOILER

FIELD INSTALLED
 World Enc

| Korea

Galleria Department Store Gwanggyo
Hot water / 750RT 6 units, 190RT 2 units

Changdong Station Cultural Industrial Complex Complex Direct Fired / 560RT 4 units

Homeplus Suwon Homesil Hot water / 600RT 2 units

Gwangmyeong Lotte Outlet Hot water / 600RT 7 units, 135RT 2 units

E-Mart (Paju Unjeong / Asan Baebang) Hot water / 575RT 2 units, 525RT 2 units

Songdo Landmark Prugio City Hot water / 600RT 2 units, 400RT units, 200RT units

$\begin{array}{ll}\text { Hot water / 470RT } 2 \text { units, } & \text { Direct Fired / 500RT } 2 \text { units }\end{array}$

Magok Genexine Handok RND Center Hot water / 600RT 2 units,
380RT 2 units, 135 / 110RT

Homeplus Sosa
Direct Fired / 600RT 5 units

Lakeside Gwanggyo Residential Complex Hot water / 675RT 2 units, 525RT 2 units

Lotte Cheongna Residential Complex

POSCO Gwanggyo Residential Complex Hot water / 525RT 3 units, 135RT 2 units

340RT 4 units

THE HE 隹T OFTHE BOILER

Italy / Mexico / Germany

New Treviso Hospital in Italy Hot water / 420RT 1 unit

Vetropack in Italy
Hot water / 155RT 2 units

Hotel in Brescia in Italy Hot water / 75RT 1 unit

Pordenone Hospital in Italy
Hot water / 210RT 2 units

FOE HOTEL ALBA in Italy
Hot water / 135RT 1 unit

IBI Pharmaceutical Spa in Italy Hot water / 180RT 1 unit

SYMBIOSIS MILANO in Italy Hot water / 75RT 1 unit

Catapult Factory in Mexico Hot water / 110RT 1 unit

HEWMEG in Germany Hot water / 900RT 1 unit, 600RT 2 units

3M - Hilden in Germany Hot water / 240RT 1 unit

Militeny Biotec in Germany Hot water / 90RT 2 units

Tornow in Germany Hot water / 75RT 1 unit

THE HEERT OFTHE BOILER

37

FIELD INSTALLED

World Enc
| Poland / Iran / Pakistan

JEDRUS in Poland
Hot water / 90RT 2 units

Żołynia in Poland
Direct Fired / 60RT 2 units

Tehran Hospital in Iran
Direct Fired / 360RT 1 unit

PSPC/SPC in Pakistan
Direct Fired / 500RT \& 360RT

Hospital Trigen in Poland Hot water / 60RT 2 units

Lexon Tower in Iran Direct Fired / 630RT 2 units

R\&D Center in Iran
Direct Fired / 240RT 1 unit

Karachi Hospital in Pakistan Hot water / 375RT 1 unit

PGNiG in Poland
Direct Fired / 180RT 1 unit

Bahar Hospital in Iran Steam Fired / 500RT 2 units

NEE in Pakistan Direct Fired / 1400RT 2 units

Hotel OA in Pakistan
Hot water / 240RT 1 unit

I MEMO
(ii) World EnC

(ui) World EnC
 www.worldenc.com

B) bans
 www.barismuhendislik.com.tr

ENERKON
 THE HEERT OF THE BOILER

www.enerkonmuhendislik.com.tr

(ui) World EnC

H.Q \& Factory 102, Dolseoji-gil, Jangan-myeon, Hwaseong-si, Gyeonggi-do, Korea

Sales Office Digital Empire B-dong 1207-ho, 383, Simin-daero, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-70-4099-7559 Fax: +82-31-8066-5230

H.Q \& Factory Adana Organize Sanayi Bölgesi, Magarsuz Caddesi, No:8 Adana/Türkiye Tel: +90 (322) 4561414 E-mail: info@barismuhendislik.com.tr

[^0]
[^0]: Istanbul Office Barbaros mahallesi. Halk Caddesi Palladium Residence A Blok No: 8A/3 Ataşehir/Istanbul Tel: $\quad+90$ (216) 6631104

